41 research outputs found

    Chemotactic activity of extracellular nucleotideson human immune cells.

    Get PDF
    Purinergic P2 receptors are a class of plasma membrane receptors that are express in many tissues and are ligated by extracellular nucleotides [such as adenosine triphosphate (ATP), adenosine diphosphate (ADP), uridine 5–triphosphate (UTP) and uridine 5–diphosphate (UDP)], which are released as a consequence of cell damage, cell stress, bacterial infection or other noxious stimuli. According to the molecular structure, P2 receptors are divided into two subfamilies: P2X and P2Y receptors. The P2X receptors are ligand-gated channels, whereas P2Y receptors are G-protein-coupled seven-membrane-spanning receptors. Several studies indicate that nucleotides play an important role in immune response modulation through their action on multiple cell types, including monocytes, mast cells, dendritic cells, neutrophils, and eosinophils. Recent work by our group and others identified extracellular nucleotides as chemotaxins for various human immune cells, including eosinophils, neutrophils and dendritic cells. In this review, we summarise recent findings in this field and put forward a hypothesis on the role of P2 receptors in the early recruitment of human immune cells to the site of inflammation

    Ketoprofen poly(lactide-co-glycolide) physical interaction

    No full text
    The aim of this work was to provide an understanding of the interaction occurring between ketoprofen and poly(lacticco-glycodic acid) (PLGA) that leads to polymer plasticization. Experimental glass transition temperature (Tg) values were fitted with the theoretical ones predicted by the Fox and Gordon-Taylor/Kelley-Bueche equations. PLGA films containing different amounts of ketoprofen (KET) were prepared by solvent casting and characterized by scanning electron microscopy, differential scanning calorimetry, and Fourier transform infrared spectroscopy (FTIR). Differential scanning calorimetry evidenced that KET acted as a plasticizer in a similar biphasic way in both end-capped and uncapped PLGA. At KET contents of 20% to 35%, depending on the investigated polymer, the Tg was around 23°C. Higher KET amounts did not lower further the Tg, and the excess of drug was found to crystallize into the polymeric matrix. Experimental Tg's deviated negatively from the predicted ones probably because of hydrogen bonding. The FTIR spectra of the films, loaded with different amounts of KET, showed a shift to higher wavenumbers for the peaks at 1697 and 1655 cm−1 confirming the presence of some interactions, probably hydrogen bonds between the ketoprofen carboxylic group and the PLGA carbonyl groups along the polymer backbone. The hydrogen bonding between KET and PLGA is probably responsible for KET plasticizing effect. KET behaving as a lubricant may disrupt polymer chain-chain interactions, removing additional barriers to bond rotation and chain mobility
    corecore