9 research outputs found

    A Review on the Mechanical Modeling of Composite Manufacturing Processes

    Get PDF
    © 2016, The Author(s). The increased usage of fiber reinforced polymer composites in load bearing applications requires a detailed understanding of the process induced residual stresses and their effect on the shape distortions. This is utmost necessary in order to have more reliable composite manufacturing since the residual stresses alter the internal stress level of the composite part during the service life and the residual shape distortions may lead to not meeting the desired geometrical tolerances. The occurrence of residual stresses during the manufacturing process inherently contains diverse interactions between the involved physical phenomena mainly related to material flow, heat transfer and polymerization or crystallization. Development of numerical process models is required for virtual design and optimization of the composite manufacturing process which avoids the expensive trial-and-error based approaches. The process models as well as applications focusing on the prediction of residual stresses and shape distortions taking place in composite manufacturing are discussed in this study. The applications on both thermoset and thermoplastic based composites are reviewed in detail

    Effect of silica nanoparticles on compressive properties of an epoxy polymer

    Get PDF
    The effect of nanosilica on compressive properties of an Epikote 828 epoxy at room temperature was studied. A 40 wt% nanosilica/epoxy masterbatch (nanopox F400) was used to prepare a series of epoxy based nanocomposites with 5-25 wt% nanosilica content. Static uniaxial compression tests were conducted on cubic and cylindrical specimens to study the compressive stress-strain response, failure mechanisms and damage characteristics of the pure and nanomodified epoxy. It was found that the compressive stiffness and strength were improved with increasing nanosilica content without significant reduction in failure strain. The presence of nanosilica improved ductility and promoted higher plastic hardening behaviour after yielding in comparison with the unmodified resin system. This result suggested that nanoparticles introduced additional mechanisms of energy absorption to enhance the compressive properties without reducing the deformation to failure
    corecore