9 research outputs found

    Prognostic model to predict postoperative acute kidney injury in patients undergoing major gastrointestinal surgery based on a national prospective observational cohort study.

    Get PDF
    Background: Acute illness, existing co-morbidities and surgical stress response can all contribute to postoperative acute kidney injury (AKI) in patients undergoing major gastrointestinal surgery. The aim of this study was prospectively to develop a pragmatic prognostic model to stratify patients according to risk of developing AKI after major gastrointestinal surgery. Methods: This prospective multicentre cohort study included consecutive adults undergoing elective or emergency gastrointestinal resection, liver resection or stoma reversal in 2-week blocks over a continuous 3-month period. The primary outcome was the rate of AKI within 7 days of surgery. Bootstrap stability was used to select clinically plausible risk factors into the model. Internal model validation was carried out by bootstrap validation. Results: A total of 4544 patients were included across 173 centres in the UK and Ireland. The overall rate of AKI was 14路2 per cent (646 of 4544) and the 30-day mortality rate was 1路8 per cent (84 of 4544). Stage 1 AKI was significantly associated with 30-day mortality (unadjusted odds ratio 7路61, 95 per cent c.i. 4路49 to 12路90; P < 0路001), with increasing odds of death with each AKI stage. Six variables were selected for inclusion in the prognostic model: age, sex, ASA grade, preoperative estimated glomerular filtration rate, planned open surgery and preoperative use of either an angiotensin-converting enzyme inhibitor or an angiotensin receptor blocker. Internal validation demonstrated good model discrimination (c-statistic 0路65). Discussion: Following major gastrointestinal surgery, AKI occurred in one in seven patients. This preoperative prognostic model identified patients at high risk of postoperative AKI. Validation in an independent data set is required to ensure generalizability

    Osmotic stress affects physiological responses and growth characteristics of three pistachio cultivars

    No full text
    Pistachio (Pistacia vera L.) has a high tolerance to drought and soil salinity. Although adult pistachio trees are well known to be drought tolerant, the studies on physiological adaptation of pistachio cultivars to drought are limited. Therefore, three pistachio cultivars, i.e., Akbari, Kaleghochi, and Ohadi were subjected to three osmotic drought stress treatments: control (-0.1 MPa), moderate (-0.75 MPa) and severe drought (-1.5 MPa) stress using PEG 6000 for a 14-day period. All drought stress treatments decreased net photosynthesis (Pn), stomatal conductance (gs), intercellular CO2 concentration (Ci), and transpiration rate (E), but Ohadi maintained better its photosynthetic capacity compared to Akbari and Kaleghochi. Maximum quantum yield of PSII photochemistry (Fv/Fm), effective PSII quantum yield (UPSII) and photochemical quenching (qP) were also reduced. The chlorophyll fluorescence parameters indicated that Akbari was more susceptible to the applied drought stress. Drought stress levels decreased chlorophyll pigments, fresh weight, stem elongation, leaf nitrogen content (N), leaf water potential and increased water use efficiency (WUE). Proline increased strongly under drought stress for Akbari. After 2 weeks of stress a recovery of 2 weeks was applied. This period was insufficient to fully restore the negative effects of the applied stress on the studied cultivars. Based on the reduction of photosynthesis and the increase of the proline content Akbari seems more sensitive to the applied drought stress
    corecore