16 research outputs found

    Relationships between place cell firing fields and navigational decisions by rats

    No full text
    International audienceno abstrac

    Properties of place cell firing after damage to the visual cortex

    No full text
    International audienceno abstrac

    Spatial navigation and hippocampal place cell firing: the problem of goal encoding

    No full text
    International audienceSYNOPSIS Place cells are hippocampal neurons whose discharge is strongly related to a rat's location in the environment. The existence of such cells, combined with the reliable impairments seen in spatial tasks after hippocampal damage, has led to the proposal that place cells form part of an integrated neural system dedicated to spatial navigation. This hypothesis is supported by the strong relationships between place cell activity and spatial problem solving, which indicate that the place cell representation must be both functional and in register with the surroundings for the animal to perform correctly in spatial tasks. The place cell system nevertheless requires other essentia) elements to be competent, such as a component that specifies the overall goal of the animal and computes the path required to take the rat from its current location to the goal. Here, we propose a model of the neural network responsible for spatial navigation that includes goal coding and path selection. In this model, the hippocampal formation allows for place recognition, and stores the set of places that can be accessed from each position in the environment. The prefrontal cortex is responsible for encoding goal location and for route planning. The nucleus accumbens translates paths in neural space into appropriate locomotor activity that moves the animal towards the goal in real space. The complete model assumes that the hippocampal output to nucleus accumbens and prefrontal cortex provides information for generating solutions to spatial problems. In support of this model, we finally present preliminary evidence that the goal representation necessary for path planning might be encoded in the prelimbic/infralimbic region of the medial prefrontal cortex

    Behavioral state-dependent episodic representations in rat CA1 neuronal activity during spatial alternation

    No full text
    Hippocampus is considered crucial for episodic memory, as confirmed by recent findings of “episode-dependent place cells” in rodent studies, and is known to show differential activity between active exploration and quiet immobility. Most place-cell studies have focused on active periods, so the hippocampal involvement in episodic representations is less well understood. Here, we draw a typology of episode-dependent hippocampal activity among three behavioral periods, presumably governed by different molecular mechanisms: Active exploration with type 1 theta, quiet alertness with type 2 theta, and consummation with large amplitude irregular activity. Five rats were trained to perform a delayed spatial alternation task with a nose-poke paradigm and 12 tetrodes were implanted for single-unit recordings. We obtained 135 CA1 pyramidal cells and found that 75 of these fired mainly during active exploration, whereas 42 fired mainly during quiet alertness and 18 during consummation. In each type of neuron, we found episode-dependent activity: 51/75, 22/42, and 15/18, respectively. These findings extend our knowledge on the hippocampal involvement in episodic memory: Episode dependency also exists during immobile periods, and functionally dissociated cell assemblies are engaged in the maintenance of episodic information throughout different events in a task sequence
    corecore