127 research outputs found
A Fetal-Maternal Shift of Blood Oxygen Affinity in an Australian Viviparous Lizard, Sphenomorphus quoyii (Reptilia, Scincidae)
Compared to adults, the oxygen affinity of blood from fetal Sphenomorphus quoyii is very much higher: P50 is approximately 70 Torr in adults and 30 Torr in nearly full term embryos (PC02= 17 Torr, T=34 degrees C). Following birth, oxygen affinity decreases gradually and adult values are approached after about 15 weeks, with the onset of winter retreat. Electrophoresis revealed a multiple hemoglobin system in both adults and embryos, but there were no apparent differences between them
Incubation environment impacts the social cognition of adult lizards
Recent work exploring the relationship between early environmental conditions and cognition has shown that incubation environment can influence both brain anatomy and performance in simple operant tasks in young lizards. It is currently unknown how it impacts other, potentially more sophisticated, cognitive processes. Social-cognitive abilities, such as gaze following and social learning, are thought to be highly adaptive as they provide a short-cut to acquiring new information. Here, we investigated whether egg incubation temperature influenced two aspects of social cognition, gaze following and social learning in adult reptiles (Pogona vitticeps). Incubation temperature did not influence the gaze following ability of the bearded dragons; however, lizards incubated at colder temperatures were quicker at learning a social task and faster at completing that task. These results are the first to show that egg incubation temperature influences the social cognitive abilities of an oviparous reptile species and that it does so differentially depending on the task. Further, the results show that the effect of incubation environment was not ephemeral but lasted long into adulthood. It could thus have potential long-term effects on fitness
Is Aquatic Life Correlated with an Increased Hematocrit in Snakes?
Background: Physiological adaptations that allow air-breathing vertebrates to remain underwater for long periods mainly involve modifications of the respiratory system, essentially through increased oxygen reserves. Physiological constraints on dive duration tend to be less critical for ectotherms than for endotherms because the former have lower mass-specific metabolic rates. Moreover, comparative studies between marine and terrestrial ectotherms have yet to show overall distinct physiological differences specifically associated with oxygen reserves. Methodology/Principal Findings: We used phylogenetically informed statistical models to test if habitat affects hematocrit (an indicator of blood oxygen stores) in snakes, a lineage that varies widely in habitat use. Our results indicate that both phylogenetic position (clade) and especially habitat are significant predictors of hematocrit. Our analysis also confirms the peculiar respiratory physiology of the marine Acrochordus granulatus. Conclusion/Significance: Contrary to previous findings, marine snakes have significantly–albeit slightly–elevated hematocrit, which should facilitate increased aerobic dive times. Longer dives could have consequences for foraging, mate searching, and predation risks. Alternatively, but not exclusively, increased Hct in marine species might also help t
A new rhynchocephalian from the late jurassic of Germany with a dentition that is unique amongst tetrapods.
Rhynchocephalians, the sister group of squamates (lizards and snakes), are only represented by the single genus Sphenodon today. This taxon is often considered to represent a very conservative lineage. However, rhynchocephalians were common during the late Triassic to latest Jurassic periods, but rapidly declined afterwards, which is generally attributed to their supposedly adaptive inferiority to squamates and/or Mesozoic mammals, which radiated at that time. New finds of Mesozoic rhynchocephalians can thus provide important new information on the evolutionary history of the group.
A new fossil relative of Sphenodon from the latest Jurassic of southern Germany, Oenosaurus muehlheimensis gen. et sp. nov., presents a dentition that is unique amongst tetrapods. The dentition of this taxon consists of massive, continuously growing tooth plates, probably indicating a crushing dentition, thus representing a previously unknown trophic adaptation in rhynchocephalians.
The evolution of the extraordinary dentition of Oenosaurus from the already highly specialized Zahnanlage generally present in derived rhynchocephalians demonstrates an unexpected evolutionary plasticity of these animals. Together with other lines of evidence, this seriously casts doubts on the assumption that rhynchocephalians are a conservative and adaptively inferior lineage. Furthermore, the new taxon underlines the high morphological and ecological diversity of rhynchocephalians in the latest Jurassic of Europe, just before the decline of this lineage on this continent. Thus, selection pressure by radiating squamates or Mesozoic mammals alone might not be sufficient to explain the demise of the clade in the Late Mesozoic, and climate change in the course of the fragmentation of the supercontinent of Pangaea might have played a major role
Validation and Use of 22Na Turnover to Measure Food Intake in Free-Ranging Lizards
As the food intake of free-ranging animals has proved to be difficult to measure by traditional means, the feasibility of using radioactive Na to measure food consumption in a small scincid lizard (Lampropholis guichenoti) was assessed. This technique has previously been used only for several species of mammal. A significant relationship between food intake and Na turnover was found in the laboratory, with Na turnover underestimating intake by 7.6%. The food intake of free-ranging members of a field population was estimated by 22Na turnover to be 9.55, 0.65, 9.39 and 13.75 mg dry weight (day)-1 during autumn, winter, spring and summer respectively. Estimates of assimilated and expended energy from these food intake values agree closely with data reported for other lizards using alternative techniques. This study also describes the technical innovations which were necessary to study lizards weighing less than 1 g; and it suggests that 22Na can provide an easy, reliable and inexpensive means of studying the energetics of many free-living animals
Hydrodynamics of fossil fishes
Fromtheir earliest origins, fishes have developed a suite of adaptations for locomotion in water, which determine performance and ultimately fitness. Even without data from behaviour, soft tissue and extant relatives, it is possible to infer a wealth of palaeobiological and palaeoecological information. As in extant species, aspects of gross morphology such as streamlining, fin position and tail type are optimized even in the earliest fishes, indicating similar life strategies have been present throughout their evolutionary history. As hydrodynamical studies become more sophisticated, increasingly complex fluid movement can be modelled, including vortex formation and boundary layer control. Drag-reducing riblets ornamenting the scales of fast-moving sharks have been subjected to particularly intense research, but this has not been extended to extinct forms. Riblets are a convergent adaptation seen in many Palaeozoic fishes, and probably served a similar hydrodynamic purpose. Conversely, structures which appear to increase skin friction may act as turbulisors, reducing overall dragwhile serving a protective function. Here,we examine the diverse adaptions that contribute to drag reduction in modern fishes and review the few attempts to elucidate the hydrodynamics of extinct forms
Development of mandibular, hyoid and hypobranchial muscles in the zebrafish: homologies and evolution of these muscles within bony fishes and tetrapods
<p>Abstract</p> <p>Background</p> <p>During vertebrate head evolution, muscle changes accompanied radical modification of the skeleton. Recent studies have suggested that muscles and their innervation evolve less rapidly than cartilage. The freshwater teleostean zebrafish (<it>Danio rerio</it>) is the most studied actinopterygian model organism, and is sometimes taken to represent osteichthyans as a whole, which include bony fishes and tetrapods. Most work concerning zebrafish cranial muscles has focused on larval stages. We set out to describe the later development of zebrafish head muscles and compare muscle homologies across the Osteichthyes.</p> <p>Results</p> <p>We describe one new muscle and show that the number of mandibular, hyoid and hypobranchial muscles found in four day-old zebrafish larvae is similar to that found in the adult. However, the overall configuration and/or the number of divisions of these muscles change during development. For example, the undivided adductor mandibulae of early larvae gives rise to the adductor mandibulae sections A0, A1-OST, A2 and Aω, and the protractor hyoideus becomes divided into dorsal and ventral portions in adults. There is not always a correspondence between the ontogeny of these muscles in the zebrafish and their evolution within the Osteichthyes. All of the 13 mandibular, hyoid and hypobranchial muscles present in the adult zebrafish are found in at least some other living teleosts, and all except the protractor hyoideus are found in at least some extant non-teleost actinopterygians. Of these muscles, about a quarter (intermandibularis anterior, adductor mandibulae, sternohyoideus) are found in at least some living tetrapods, and a further quarter (levator arcus palatini, adductor arcus palatini, adductor operculi) in at least some extant sarcopterygian fish.</p> <p>Conclusion</p> <p>Although the zebrafish occupies a rather derived phylogenetic position within actinopterygians and even within teleosts, with respect to the mandibular, hyoid and hypobranchial muscles it seems justified to consider it an appropriate representative of these two groups. Among these muscles, the three with clear homologues in tetrapods and the further three identified in sarcopterygian fish are particularly appropriate for comparisons of results between the actinopterygian zebrafish and the sarcopterygians.</p
Predation and the Maintenance of Color Polymorphism in a Habitat Specialist Squamate
Multiple studies have addressed the mechanisms maintaining polymorphism within a population. However, several examples exist where species inhabiting diverse habitats exhibit local population-specific polymorphism. Numerous explanations have been proposed for the maintenance of geographic variation in color patterns. For example, spatial variation in patterns of selection or limited gene flow can cause entire populations to become fixed for a single morph, resulting in separate populations of the same species exhibiting separate and distinct color morphs. The mottled rock rattlesnake (Crotalus lepidus lepidus) is a montane species that exhibits among-population color polymorphism that correlates with substrate color. Habitat substrate in the eastern part of its range is composed primarily of light colored limestone and snakes have light dorsal coloration, whereas in the western region the substrate is primarily dark and snakes exhibit dark dorsal coloration. We hypothesized that predation on high contrast color and blotched patterns maintain these distinct color morphs. To test this we performed a predation experiment in the wild by deploying model snakes at 12 sites evenly distributed within each of the two regions where the different morphs are found. We employed a 2×2 factorial design that included two color and two blotched treatments. Our results showed that models contrasting with substrate coloration suffered significantly more avian attacks relative to models mimicking substrates. Predation attempts on blotched models were similar in each substrate type. These results support the hypothesis that color pattern is maintained by selective predation
- …