93 research outputs found

    Strategic planning optimisation of "Napoli Est" water distribution system

    Get PDF
    The District Meter Areas (DMA) design is an innovative methodology of water networks management, based on the pressure patterns control and on the water flows monitoring, in order to reduce water losses and to optimize the water systems management. A District Meter Area is an area supplied from few water inputs, into which discharges can be easily measured to determine leaks. So, the DMA design represents an alternative to the traditional approach based on heavy looped distribution network. In the present paper the DMA design of the “Napoli Est” water distribution system (approximately 65.000Ă·70.000 customers), performed with the support of the Water Agency ARIN S.p.A., is discussed. After analysis of authorized consumption, by means of a monitoring campaign of water flows over the area, the system water balance was performed, showing significant water losses, as a consequence of high pressure patterns. This situation was confirmed by the high number of maintenance operations performed in the area during the year 2005. In order to characterize the piezometric heads on the network, ARIN S.p.A. supplied to the installation of six pressure transducers in the most vulnerable areas. The water level in the supply reservoir was also measured in order to estimate its influence on the network pressure heads. Hydraulic simulations were carried out with the EPANET software version 2.0 applied to a network layout resulted from the system “skeletonization”, achieved by eliminating out of order pipes, integrating pipelines of same diameter and roughness, replacing dead-end branches and small networks supplied by a single junction with an equivalent discharge. After the skeletonizated network was calibrated, several hypothesis of designing and implementing DMA to reduce physical losses were performed, providing adequate operating pressure of the system. Many numerical simulations were performed to guarantee adequate head pressure especially for peak hours demand, break of transmission mains and fire hydrant service. A chlorine residuals analysis was also effected, by simulating the transport and decay of chlorine through the network. District Meter Areas, therefore, were designed, and the corresponding hydraulic and water quality investigations and simulations were carried out. Six District Meter Areas were planned, assembling 14 intercepting valves and 9 pressure reducing valves to prevent the downstream pressure head from exceeding the set value, achieving a remarkable water saving, approximately equal to 34% of the physical losses, corresponding to 16% of system input volume

    Effects of different simplified milk recording methods on genetic evaluation with test-day animal model

    Get PDF
    The aims of the present study were to compare estimated breeding values (EBV) for milk yield using different testing schemes with a test-day animal model and to evaluate the effect of different testing schemes on the ranking of top sheep. Alternative recording schemes that use less information than that currently obtained with a monthly test-day schedule were employed to estimate breeding values. A random regression animal mixed model that used a spline function of days in milk was fitted. EBVs obtained with alternative recording schemes showed different degrees of Spearman correlation with EBVs obtained using the monthly recording scheme. These correlations ranged from 0.77 to 0.92. A reduction in accuracy and intensity of selection could be anticipated if these alternative schemes are used; more research in this area is needed to reduce the costs of test-day recording

    Casein haplotype variability in Sicilian dairy goat breeds

    Get PDF
    In the Mediterranean region, goat milk production is an important economic activity. In the present study, 4 casein genes were genotyped in 5 Sicilian goat breeds to 1) identify casein haplotypes present in the Argentata dell'Etna, Girgentana, Messinese, Derivata di Siria, and Maltese goat breeds; and 2) describe the structure of the Sicilian goat breeds based on casein haplotypes and allele frequencies. In a sample of 540 dairy goats, 67 different haplotypes with frequency >or=0.01 and 27 with frequency >or=0.03 were observed. The most common CSN1S1-CSN2-CSN1S2-CSN3 haplotype for Derivata di Siria and Maltese was FCFB (0.17 and 0.22, respectively), whereas for Argentata dell'Etna, Girgentana and Messinese was ACAB (0.06, 0.23, and 0.10, respectively). According to the haplotype reconstruction, Argentata dell'Etna, Girgentana, and Messinese breeds presented the most favorable haplotype for cheese production, because the casein concentration in milk of these breeds might be greater than that in Derivata di Siria and Maltese breeds. Based on a cluster analysis, the breeds formed 2 main groups: Derivata di Siria, and Maltese in one group, and Argentata dell'Etna and Messinese in the other; the Girgentana breed was between these groups but closer to the latter

    A melanocortin 1 receptor (MC1R) gene polymorphism is useful for authentication of Massese sheep dairy products

    Get PDF
    Massese is an Italian sheep breed, with black or grey coat colour, mainly reared in the Tuscany and Emilia Romagna regions. Recently, the emerging interests in this breed have resulted in the production of Pecorino cheese obtained with only Massese milk. In order to be profitable, this marketing link between Massese breed and its products should be defended against fraudsters who could include milk of other sheep breeds or cow milk in Massese labelled productions. To identify the genetic factors affecting coat colour in sheep, we have recently analysed the melanocortin 1 receptor (MC1R) gene and identified several single nucleotide polymorphisms (SNPs). In this work, as a first step to set up a DNA based protocol for authentication of Massese dairy products, we further investigated the presence and distribution of one of these SNPs (c.-31G>A) in 143 Massese sheep and in another 13 sheep breeds (for a total of 351 animals). The Massese breed was fixed for allele c.-31A, whereas in all other breeds allele c.-31 G was the most frequent or with frequency of 0\ub750. At the same nucleotide position the cattle MC1R gene carries the G nucleotide. Using these data we developed a method to detect adulterating milk (from other sheep breeds or from cow) in Massese dairy products based on the analysis of the c.-31G>A SNP. We first tested the sensitivity of the protocol and then applied it to analyse DNA extracted from ricotta and Pecorino cheese obtained with only Massese milk or obtained with unrestricted sheep and cattle milk. To our knowledge, this system represents the first one that can be used for breed authentication of a sheep production and that, at the same time, can reveal frauds derived from the admixture of milk of an unreported species

    Characterization of heterozygosity-rich regions in Italian and worldwide goat breeds

    Get PDF
    Heterozygosity-rich regions (HRR) are genomic regions of high heterozygosity, which may harbor loci related to key functional traits such as immune response, survival rate, fertility, and other fitness traits. This study considered 30 Italian and 19 worldwide goat breeds genotyped with the Illumina GoatSNP50k BeadChip. The aim of the work was to study inter-breed relationships and HRR patterns using Sliding Window (SW) and Consecutive Runs (CR) detection methods. Genetic relationships highlighted a clear separation between non-European and European breeds, as well as the north–south geographic cline within the latter. The Pearson correlation coefficients between the descriptive HRR parameters obtained with the SW and CR methods were higher than 0.9. A total of 166 HRR islands were detected. CHI1, CHI11, CHI12 and CHI18 were the chromosomes harboring the highest number of HRR islands. The genes annotated in the islands were linked to various factors such as productive, reproductive, immune, and environmental adaptation mechanisms. Notably, the Montecristo feral goat showed the highest number of HRR islands despite the high level of inbreeding, underlining potential balancing selection events characterizing its evolutionary history. Identifying a species-specific HRR pattern could provide a clearer view of the mechanisms regulating the genome modelling following anthropogenic selection combined with environmental interaction

    A first comparative map of copy number variations in the sheep genome

    Get PDF
    We carried out a cross species cattle–sheep array comparative genome hybridization experiment to identify copy number variations (CNVs) in the sheep genome analysing ewes of Italian dairy or dual-purpose breeds (Bagnolese, Comisana, Laticauda, Massese, Sarda, and Valle del Belice) using a tiling oligonucleotide array with ~385,000 probes designed on the bovine genome. We identified 135 CNV regions (CNVRs; 24 reported in more than one animal) covering ~10.5 Mb of the virtual sheep genome referred to the bovine genome (0.398%) with a mean and a median equal to 77.6 and 55.9 kb, respectively. A comparative analysis between the identified sheep CNVRs and those reported in cattle and goat genomes indicated that overlaps between sheep and both other species CNVRs are highly significant (Pb0.0001), suggesting that several chromosome regions might contain recurrent interspecies CNVRs. Many sheep CNVRs include genes with important biological functions. Further studies are needed to evaluate their functional relevance

    BOVITA: a first overview on genome-wide genetic diversity of Italian autochthonous cattle breeds

    Get PDF
    Analysis of genomic data is increasingly becoming part of the livestock industry and is an invaluable resource for effective management of breeding programs in small populations. The recent availability of genome-wide SNP panels allows providing background information concerning genome structure in domestic animals, opening new perspectives to livestock genetics. BOVITA was established to join local efforts and resources for the genomic characterization of Italian local cattle breeds. Despite the growing diffusion of some cosmopolite specialized breeds, several autochthonous breeds are still bred in Italy. The main aim of the BOVITA is to investigate the genomic structure of Italian local cattle breeds, to provide information on their genetic status that will be useful for the management of the genetic variability, as a contribution to biodiversity conservation and prioritization actions. A total of about 800 animals (20-32 per breed) belonging to thirty Italian cattle breeds (Agerolese, Bar\ue0-Pustertaler, Burlina, Cabannina, Calvana, Chianina, Cinisara, Garfagnina, Italian Brown, Italian Holstein, Italian Simmental, Marchigiana, Maremmana, Modenese, Modicana, Mucca Pisana, Pezzata Rossa d\u2019Oropa, Piedmontese, Pinzgau, Podolica, Pontremolese, Pustertaler, Reggiana, Rendena, Romagnola, Rossa Siciliana, Sarda, Sardo-Bruna, Sardo-Modicana and Ottonese-Varzese) and two cosmopolitan breeds (Charolaise and Limousine) genotyped with the Illumina BovineSNP50 v2 BeadChip array were collected for the analysis. The genotypes of several breeds were detected in the frame of the project, whereas for some breeds these data are derived by previous studies. The dataset will be analyzed to: study several aspects of population genetic diversity, multi-dimensional scaling plot, population structure, linkage disequilibrium, and runs of homozygosity. In addition, comparative analysis of conserved haplotypes will be conducted to identify genomic segments under selection pressure. Such information also provides important insights into the mechanisms of evolution and is useful for the annotation of significant functional genomics regions. Data analysis will also be useful to select SNPs suitable for parentage test and breed genetic traceability. The analysis of the data will pinpoint the genetic distinctiveness of Italian breeds. Moreover, the obtained results contribute to a better characterization of history and genetic structure of Italian cattle breeds

    A genome-wide perspective on the population structure of Italian cattle breeds

    Get PDF
    Despite the growing diffusion of cosmopolite specialized breeds, several autochthonous populations are still farmed in Italy. The aim of this study was to provide a high-resolution picture of the genome-wide diversity and population structure of Italian local cattle breeds using medium-density genome-wide SNP markers. After data editing, the dataset included 800 samples from 32 breeds that were genotyped for 31,013 SNPs. For several breeds we observed a low level of polymorphism and genetic diversity that confirmed threat of extinction. Shared ancestry, admixture events, and reticulations observed on the phylogenetic tree between some breeds, all suggest high levels of gene flow. Clear clusters and relationships between breeds that originated from the same geographical area were detected. However, in spite of the complex admixture history, many of the local Italian cattle breeds have retained unique identities and are clearly differentiated breeds. Differences in their origin, in climate characteristics of farming areas, the genetic isolation, and the inbreeding can be the main reasons for such differentiation. This study represents the first exhaustive genome-wide analysis of Italian cattle diversity. The results largely agreed with the breeding history of the Italian cattle breeds. The population structure and the low genetic diversity presented here for several breeds should be evaluated in adopting conservation strategies. Thus, efforts should be made to improve genetic diversity in these breeds. Control of inbreeding, breeding stations development and improvement of recording system are strategies to conserve these breeds under in situ conservation situation, and in this context, genomic information may play a crucial role for the preservation and management of these populations

    Analysis of ddRAD-seq data provides new insights into the genomic structure and patterns of diversity in Italian donkey populations

    Get PDF
    With more than 150 recognized breeds, donkeys assume relevant economic importance, especially in developing countries. Even if the estimated number of heads worldwide is 53M, this species received less attention than other livestock species. Italy has traditionally been considered one of the cradles of European donkey breeding, and despite a considerable loss of biodiversity, today still counts nine autochthonous populations. A total of 220 animals belonging to nine different populations were genotyped using the double-digest restriction site associated DNA (ddRAD) sequencing to investigate the pattern of diversity using a multi-Technique approach. A total of 418,602,730 reads were generated and successfully demultiplexed to obtain a medium-density SNP genotypes panel with about 27K markers. The diversity indices showed moderate levels of variability. The genetic distances and relationships, largely agree with the breeding history of the donkey populations under investigation. The results highlighted the separation of populations based on their genetic origin or geographical proximity between breeding areas, showed low to moderate levels of admixture, and indicated a clear genetic difference in some cases. For some breeds, the results also validate the success of proper management conservation plans. Identified runs of homozygosity islands, mapped within genomic regions related to immune response and local adaptation, are consistent with the characteristics of the species known for its rusticity and adaptability. This study is the first exhaustive genome-wide analysis of the diversity of Italian donkey populations. The results emphasized the high informativeness of genome-wide markers retrieved through the ddRAD approach. The findings take on great significance in designing and implementing conservation strategies. Standardized genotype arrays for donkey species would make it possible to combine worldwide datasets to provide further insights into the evolution of the genomic structure and origin of this important genetic resource

    Missense and nonsense mutations in melanocortin 1 receptor (MC1R) gene of different goat breeds: association with red and black coat colour phenotypes but with unexpected evidences

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Agouti </it>and <it>Extension </it>loci control the relative amount of eumelanin and pheomelanin production in melanocytes that, in turn, affects pigmentation of skin and hair. The <it>Extension </it>locus encodes the melanocortin 1 receptor (MC1R) whose permanent activation, caused by functional mutations, results in black coat colour, whereas other inactivating mutations cause red coat colour in different mammals.</p> <p>Results</p> <p>The whole coding region of the <it>MC1R </it>gene was sequenced in goats of six different breeds showing different coat colours (Girgentana, white cream with usually small red spots in the face; Maltese, white with black cheeks and ears; Derivata di Siria, solid red; Murciano-Granadina, solid black or solid brown; Camosciata delle Alpi, brown with black stripes; Saanen, white; F<sub>1 </sub>goats and the parental animals). Five single nucleotide polymorphisms (SNPs) were identified: one nonsense mutation (p.Q225X), three missense mutations (p.A81V, p.F250V, and p.C267W), and one silent mutation. The stop codon at position 225 should cause the production of a shorter MC1R protein whose functionality may be altered. These SNPs were investigated in a larger sample of animals belonging to the six breeds. The Girgentana breed was almost fixed for the p.225X allele. However, there was not complete association between the presence of red spots in the face and the presence of this allele in homozygous condition. The same allele was identified in the Derivata di Siria breed. However, its frequency was only 33%, despite the fact that these animals are completely red. The p.267W allele was present in all Murciano-Granadina black goats, whereas it was never identified in the brown ones. Moreover, the same substitution was present in almost all Maltese goats providing evidence of association between this mutation and black coat colour.</p> <p>Conclusion</p> <p>According to the results obtained in the investigated goat breeds, <it>MC1R </it>mutations may determine eumelanic and pheomelanic phenotypes. However, they are probably not the only factors. In particular, the surprising not complete association of the nonsense mutation (p.Q225X) with red coat colour raises a few hypotheses on the determination of pheomelanic phenotypes in goats that should be further investigated.</p
    • 

    corecore