3,458 research outputs found
A new steplength selection for scaled gradient methods with application to image deblurring
Gradient methods are frequently used in large scale image deblurring problems
since they avoid the onerous computation of the Hessian matrix of the objective
function. Second order information is typically sought by a clever choice of
the steplength parameter defining the descent direction, as in the case of the
well-known Barzilai and Borwein rules. In a recent paper, a strategy for the
steplength selection approximating the inverse of some eigenvalues of the
Hessian matrix has been proposed for gradient methods applied to unconstrained
minimization problems. In the quadratic case, this approach is based on a
Lanczos process applied every m iterations to the matrix of the most recent m
back gradients but the idea can be extended to a general objective function. In
this paper we extend this rule to the case of scaled gradient projection
methods applied to non-negatively constrained minimization problems, and we
test the effectiveness of the proposed strategy in image deblurring problems in
both the presence and the absence of an explicit edge-preserving regularization
term
The Popescu–Gabriel theorem for triangulated categories
AbstractThe Popescu–Gabriel theorem states that each Grothendieck abelian category is a localization of a module category. In this paper, we prove an analogue where Grothendieck abelian categories are replaced by triangulated categories which are well generated (in the sense of Neeman) and algebraic (in the sense of Keller). The role of module categories is played by derived categories of small differential graded categories. An analogous result for topological triangulated categories has recently been obtained by A. Heider
Variable metric inexact line-search based methods for nonsmooth optimization
We develop a new proximal-gradient method for minimizing the sum of a
differentiable, possibly nonconvex, function plus a convex, possibly non
differentiable, function. The key features of the proposed method are the
definition of a suitable descent direction, based on the proximal operator
associated to the convex part of the objective function, and an Armijo-like
rule to determine the step size along this direction ensuring the sufficient
decrease of the objective function. In this frame, we especially address the
possibility of adopting a metric which may change at each iteration and an
inexact computation of the proximal point defining the descent direction. For
the more general nonconvex case, we prove that all limit points of the iterates
sequence are stationary, while for convex objective functions we prove the
convergence of the whole sequence to a minimizer, under the assumption that a
minimizer exists. In the latter case, assuming also that the gradient of the
smooth part of the objective function is Lipschitz, we also give a convergence
rate estimate, showing the O(1/k) complexity with respect to the function
values. We also discuss verifiable sufficient conditions for the inexact
proximal point and we present the results of a numerical experience on a convex
total variation based image restoration problem, showing that the proposed
approach is competitive with another state-of-the-art method
On the filtering effect of iterative regularization algorithms for linear least-squares problems
Many real-world applications are addressed through a linear least-squares
problem formulation, whose solution is calculated by means of an iterative
approach. A huge amount of studies has been carried out in the optimization
field to provide the fastest methods for the reconstruction of the solution,
involving choices of adaptive parameters and scaling matrices. However, in
presence of an ill-conditioned model and real data, the need of a regularized
solution instead of the least-squares one changed the point of view in favour
of iterative algorithms able to combine a fast execution with a stable
behaviour with respect to the restoration error. In this paper we want to
analyze some classical and recent gradient approaches for the linear
least-squares problem by looking at their way of filtering the singular values,
showing in particular the effects of scaling matrices and non-negative
constraints in recovering the correct filters of the solution
- …