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VARIABLE METRIC INEXACT LINE-SEARCH-BASED METHODS
FOR NONSMOOTH OPTIMIZATION∗

S. BONETTINI† , I. LORIS‡ , F. PORTA† , AND M. PRATO§

Abstract. We develop a new proximal-gradient method for minimizing the sum of a differ-
entiable, possibly nonconvex, function plus a convex, possibly nondifferentiable, function. The key
features of the proposed method are the definition of a suitable descent direction, based on the prox-
imal operator associated to the convex part of the objective function, and an Armijo-like rule to
determine the stepsize along this direction ensuring the sufficient decrease of the objective function.
In this frame, we especially address the possibility of adopting a metric which may change at each
iteration and an inexact computation of the proximal point defining the descent direction. For the
more general nonconvex case, we prove that all limit points of the iterates sequence are stationary,
while for convex objective functions we prove the convergence of the whole sequence to a minimizer,
under the assumption that a minimizer exists. In the latter case, assuming also that the gradient
of the smooth part of the objective function is Lipschitz, we also give a convergence rate estimate,
showing the O( 1

k
) complexity with respect to the function values. We also discuss verifiable suf-

ficient conditions for the inexact proximal point and present the results of two numerical tests on
total-variation-based image restoration problems, showing that the proposed approach is competitive
with other state-of-the-art methods.
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1. Introduction. In this paper we consider the problem

(1) min
x∈Rn

f(x) ≡ f0(x) + f1(x),

where f1 is a proper, convex, lower semicontinuous function and f0 is smooth, i.e.,
continuously differentiable, on an open subset Ω0 of Rn containing dom(f1) = {x ∈
R

n : f1(x) < +∞}. We also assume that f1 is bounded from below and that dom(f1)
is nonempty and closed. Formulation (1) includes constrained problems over convex
sets, which can be introduced by adding to f1 the indicator function of the feasible
set.

When in particular f1 reduces to the indicator function of a convex set Ω, i.e.,
f1 = ιΩ, with

ιΩ(x) =

{
0 if x ∈ Ω,

+∞ if x �∈ Ω,
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892 S. BONETTINI, I. LORIS, F. PORTA, AND M. PRATO

a simple and well-studied algorithm for the solution of (1) is the gradient projection
method, which is particularly appealing for large-scale problems. Several variants
of such methods have been proposed [7, 11, 20, 23], with the aim to accelerate the
convergence, which, for the basic implementation, can be very slow. In particular, re-
liable acceleration techniques have been proposed for the so-called gradient projection
method with line-search along the feasible direction [6, Chapter 2], whose iteration
consists of

(2) x(k+1) = x(k) + λ(k)(y(k) − x(k)),

where y(k) is the Euclidean projection of the point x(k) −∇f0(x(k)) onto the feasible
set Ω, and λ(k) ∈ [0, 1] is a steplength parameter ensuring the sufficient decrease of
the objective function. Typically, λ(k) is determined by a backtracking loop until
an Armijo-type inequality is satisfied. Variants of the basic scheme are obtained by
introducing a further variable stepsize parameter αk, which controls the step along the
gradient, in combination with a variable choice of the underlying metric. In practice,
the point y(k) can be defined as

(3) y(k) = arg min
y∈Ω

∇f0(x(k))T (y − x(k)) +
1

2αk
(y − x(k))TDk(y − x(k)),

where αk is a positive parameter and Dk ∈ R
n×n is a symmetric positive definite

matrix. The stepsizes αk and the matrices Dk have to be considered as “free” param-
eters of the method, and a clever choice of them can lead to significant improvements
in the practical convergence behavior [7, 9, 11].

In this paper we generalize the gradient projection scheme (2)–(3) by introducing
the concept of descent direction for the case where f1 is a general convex function and
we propose a suitable variant of the Armijo rule for the nonsmooth problem (1). In
particular, we focus on the case when the descent direction has the form y(k) − x(k),
with

(4) y(k) = arg min
y∈Rn

∇f0(x(k))T (y − x(k)) + dσ(k)(y, x(k)) + f1(y) − f1(x
(k)),

where dσ(k)(·, ·) plays the role of a distance function, depending on the parameter
σ(k) ∈ R

q. Clearly, (4) is a generalization of (3), which is recovered when f1 = ιΩ, by
setting dσ(y, x) = 1

α (y − x)TD(y − x), with σ = (α,D).
Formally, the scheme (2)–(4) is a forward–backward (or proximal-gradient) method

[17, 18] depending on the parameters λ(k), σ(k). In particular, we deeply investigate
the variant of the scheme (2)–(4) where the minimization problem in (4) is solved
inexactly, and we devise two types of admissible approximations. We show that
both approximation types can be practically computed when f1(x) = g(Ax), where
A ∈ R

m×n and g : Rm → R is a proper, convex, lower semicontinuous function with an
easy-to-compute resolvent operator. In this case, our scheme consists in a double-loop
method, where the inner loop is provided by an implementable stopping criterion. For
general f0, we are able to prove that any limit point of the sequence generated by
our inexact scheme is stationary for problem (1). The proof of this fact is essentially
based on the properties of the Armijo-type rule adopted for computing λ(k), and it
does not require any Lipschitz property of the gradient of f0. When f0 is convex,
we prove a stronger result, showing that the iterates converge to a minimizer of (1),
if it exists. In the latter case, under the further assumption that ∇f0 is Lipschitz
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continuous, we give an O( 1
k ) convergence rate estimate for the objective function val-

ues. Our analysis includes as special cases several state-of-the-art methods, as those
in [7, 10, 11, 28, 35].

Forward–backward algorithms based on a variable metric have been recently stud-
ied also in [16] for the convex case and in [15] for the nonconvex case under the
Kurdyka–�Lojasiewicz assumption (see also [22]). Even if our scheme is formally very
similar to those in [15, 16], the involved parameters have a substantially different
meaning. In our case, the theoretical convergence is ensured by the Armijo parameter
λ(k) in combination with the descent direction properties; this results in an almost
complete freedom to choose the other algorithm parameters (e.g., αk and Dk), with-
out necessarily relating them to the Lipschitz constant of ∇f0 (actually, our analysis,
except for the convergence rate estimate, is performed without this assumption). We
believe that this is also one of the main strengths of our method, since acceleration
techniques based on suitable choices of αk and Dk, originally proposed for smooth
optimization, can be adopted, leading to an improvement of the practical perfor-
mances. The other crucial ingredient of our method is the inexact computation of
the minimizer in (4): this issue has been considered in several papers in the context
of proximal and proximal-gradient methods (see, for example, [1, 15, 34, 36] and ref-
erences therein). The approach we follow in this paper is more similar to the one
proposed in [36] and has the advantage of providing an implementable condition for
the approximate computation of the proximal point. Moreover, we also generalize the
ideas proposed in [7] for the inexact computation of the projection onto a convex set.
Finally, we also mention the papers [2, 3, 4, 21] for the use of non-Euclidean distances
in the context of forward–backward and proximal methods.

The paper is organized as follows: In section 2 the concept of descent direction for
problem (1) is presented and developed, while in section 3 the modified Armijo rule is
discussed. Then a general convergence result for line-search descent algorithms based
on this rule is proved in the nonconvex case. Two different inexactness criteria, called
ε-type and η-type, are proposed in sections 3.2 and 3.3, and the related implementation
is discussed in sections 4.1 and 4.4. Section 3.5 deals with the convex case, where
the convergence of an ε-approximation-based algorithm is proved and the related
convergence rate is analyzed. The results of two numerical tests on total-variation-
based image restoration problems are presented in section 5, and our conclusions are
given in section 6.

Notation. We denote the extended real numbers set as R̄ = R ∪ {−∞,+∞}
and by R≥0, R>0 the set of nonnegative and positive real numbers, respectively. The
scaled Euclidean norm of an n-vector x, associated to a symmetric positive definite
matrix D, is ‖x‖D =

√
xTDx. Given μ ≥ 1, we denote by Mμ the set of all symmetric

positive definite matrices with all eigenvalues contained in the interval [ 1μ , μ]. For any

D ∈ Mμ we have that D−1 also belongs to Mμ and

(5)
1

μ
‖x‖2 ≤ ‖x‖2D ≤ μ‖x‖2

for any x ∈ R
n.

2. A family of descent directions. When f is smooth, a vector d ∈ R
n is said

to be a descent direction for f at x when ∇f(x)T d < 0. In the nonsmooth case (1), a
vector d ∈ R

n is a descent direction for f at x ∈ dom(f) if f ′(x; d) < 0, where f ′(x; d)
is the one-sided directional derivative of f at x with respect to a vector d defined as

D
ow

nl
oa

de
d 

04
/1

3/
21

 to
 1

55
.1

85
.1

04
.1

50
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

894 S. BONETTINI, I. LORIS, F. PORTA, AND M. PRATO

(see [32, p. 213])

(6) f ′(x; d) = lim
λ↓0

f(x + λd) − f(x)

λ

if the limit on the right-hand side exists in R̄. Thanks to [32, Theorem 23.1], the
previous definition is well posed. In this section we define a family of descent directions
for problem (1). To this end, we define the following set of nonnegative functions.

Given a convex set Ω ⊆ R
n and a set of parameters S ⊆ R

q, we denote by D(Ω, S)
the set of any distance-like function dσ : R

n × R
n → R≥0 ∪ {+∞} continuously

depending on σ ∈ S such that for all z, x ∈ Ω
(D1) dσ(z, x) is continuous in (σ, z, x);
(D2) dσ(z, x) is smooth with respect to z ∈ Ω;
(D3) dσ(z, x) is strongly convex with respect to z:

dσ(z2, x) ≥ dσ(z1, x) + ∇1dσ(z1, x)T (z2 − z1) +
m

2
‖z2 − z1‖2 ∀z1, z2 ∈ Ω,

where m > 0 does not depend on σ or x (here ∇1 denotes the gradient with
respect to the first argument of a function);

(D4) dσ(z, x) = 0 if and only if z = x (which implies that ∇1dσ(x, x) = 0 for all
x ∈ Ω).

The scaled Euclidean distance

(7) dσ(x, y) =
1

2α
‖x− y‖2D

with σ = (α,D), where α > 0 and D ∈ R
n×n is a symmetric positive definite matrix,

is an interesting example of a function in D(Rn, S). Other examples of distance-like
functions can be obtained by considering Bregman distances associated to a strongly
convex function.

It is well known [6, p. 667] that when ∇f0 is Lipschitz continuous, and when α is
sufficiently small, the following upper bound exists for f :

f(z) ≤ f(x) + ∇f0(x)T (z − x) +
1

2α
‖z − x‖2 + f1(z) − f1(x)

(equality when z = x). In other words, a negative sign of

(8) ∇f0(x)T (z − x) +
1

2α
‖z − x‖2 + f1(z) − f1(x)

corresponds to a descent of the function f . Our aim now is to drop the Lipschitz as-
sumptions on f0 and to generalize the expression (8) for an arbitrary distance function
dσ replacing the Euclidean distance squared.

For a given array of parameters σ ∈ S ⊆ R
q, let us introduce the function

hσ : Rn × R
n → R̄ defined as

(9) hσ(z, x) = ∇f0(x)T (z − x) + dσ(z, x) + f1(z) − f1(x) ∀z, x ∈ R
n,

where dσ ∈ D(Ω, S) and Ω = dom(f1).
We remark that hσ depends continuously on σ, as does dσ. Moreover, since

dσ(·, x) and f1 are convex, proper, and lower semicontinuous, hσ(·, x) is also convex,
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proper, and lower semicontinuous for all x ∈ Ω0. Finally, for any point x ∈ Ω and for
any d ∈ R

n we have

(10) h′
σ(x, x; d) = f ′(x; d),

where h′
σ(z, x; d) denotes the directional derivative of hσ( · , x) at the point z with

respect to d.
From assumption (D3), it follows that hσ(·, x) is strongly convex and admits a

unique minimum point for any x ∈ Ω.
Now we introduce the following operator p : Ω0 → Ω associated to any function

hσ of the form (9):

(11) p(x;hσ) = arg min
z∈Rn

hσ(z, x).

When dσ is chosen as in (7), the operator (11) becomes

p(x;hσ) = proxD
αf1(x− αD−1∇f0(x)),

where proxD
f is the proximity or resolvent operator associated to a convex function

f : Rn → R̄ in the metric induced by a symmetric positive definite matrix D, defined
as [22, section 2.3]

proxD
f (x) = arg min

z∈Rn
f(z) +

1

2
‖z − x‖2D ∀x ∈ R

n.

Under assumption (D3), one can show that p(x;hσ) depends continuously on (x, σ).

Proposition 2.1. Let dσ ∈ D(Ω, S) and hσ be defined as in (9). Then p(x;hσ)
depends continuously on (x, σ).

Proof. Let y = arg minz∈Rn hσ(z, x). Then y is characterized by the equation
∇f0(x) + ∇1dσ(y, x) + w = 0, where w ∈ ∂f1(y). It follows that f1(u) ≥ f1(y) +
wT (u− y) for all u ∈ R

n or

f1(u) ≥ f1(y) − (∇f0(x) + ∇1dσ(y, x))T (u− y) ∀u ∈ R
n.

Assumption (D3) expressed in y and u gives

dσ(u, x) ≥ dσ(y, x) + ∇1dσ(y, x)T (u− y) +
m

2
‖y − u‖2 ∀u ∈ R

n.

Together, these two inequalities yield

m

2
‖y − u‖2 ≤ f1(u) − f1(y) + dσ(u, x) − dσ(y, x) + ∇f0(x)T (u− y) ∀u ∈ R

n.

Let y1 = p(x1;hσ1) and y2 = p(x2;hσ2). Adding the previous inequality for y = y1
(resp., y = y2) and choosing u = y2 (resp., u = y1), one finds

m‖y1 − y2‖2 ≤ dσ1(y2, x1) − dσ1 (y1, x1)

+ dσ2(y1, x2) − dσ2(y2, x2) + (∇f0(x1) −∇f0(x2))T (y2 − y1),

and hence

m‖y1 − y2‖2 ≤ dσ2 (y1, x2) − dσ1(y1, x1)

+ dσ1(y2, x1) − dσ2(y2, x2) + ‖∇f0(x1) −∇f0(x2)‖ ‖y2 − y1‖.
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It follows that 0 ≤ ‖y1 − y2‖ ≤ (b+
√
b2 + 4cm)/2m, where b = ‖∇f0(x1)−∇f0(x2)‖

and c = dσ2 (y1, x2) − dσ1(y1, x1) + dσ1(y2, x1) − dσ2(y2, x2). As f0 is C1, one has
limx2→x1 b = 0. As dσ(z, x) is continuous in (σ, z, x), one also has that limx2→x1 c = 0.
This shows then that limx2→x1 ‖y2 − y1‖ = 0; in other words p(x1;hσ1) is continuous
in (σ1, x1).

Given a function dσ ∈ D(Ω, S), we introduce also the function h̃σ,γ : Rn×R
n → R̄

defined as

(12) h̃σ,γ(z, x) = ∇f0(x)T (z − x) + γdσ(z, x) + f1(z) − f1(x) ∀z, x ∈ R
n

for some γ ∈ [0, 1]. We have

(13) h̃σ,γ(y, x) ≤ hσ(y, x) ∀x, y ∈ R
n

and h̃σ,γ = hσ when γ = 1. In the following we show that
• the stationarity condition f ′(x; d) ≥ 0 for all d ∈ R

n [35, p. 394] can be
reformulated in terms of fixed points of the operator p( · ;hσ);

• the negative sign of h̃σ,γ detects a descent direction.
To this purpose, we collect in the following proposition some properties of the function
hσ and the associated operator p( · ;hσ).

Proposition 2.2. Let σ ∈ S ⊆ R
q, γ ∈ [0, 1], and hσ, h̃σ,γ be defined as in (9),

(12), where dσ ∈ D(Ω, S). If x ∈ Ω and y = p(x;hσ), then
(a) h̃σ,γ(x, x) = 0;

(b) if z ∈ R
n and h̃σ,γ(z, x) < 0, then f ′(x; z − x) < 0;

(c) h̃σ,γ(y, x) ≤ 0 (h̃σ,γ(y, x) = 0 ⇔ y = x);

(d) f ′(x; y − x) ≤ 0 and the equality holds if and only if h̃σ,γ(y, x) = 0 (if and
only if x = y).

Proof. (a) This is a direct consequence of definition (12) and condition (D3) on
dσ.

(b) If h̃σ,γ(z, x) < 0, we have

0 ≥ −γdσ(z, x) > ∇f0(x)T (z − x) + f1(z) − f1(x)

≥ ∇f0(x)T (z − x) + f ′
1(x; z − x) = f ′(x; z − x),

where the second inequality follows from definition (12) of h̃σ,γ and the third one from
[32, Theorem 23.1].

(c) Since y is the minimum point of hσ( · , x), part (a) with γ = 1 yields hσ(y, x) ≤
0, which, in view of (13), gives h̃σ,γ(y, x) ≤ 0. If y = x, part (a) implies h̃σ,γ(y, x) = 0.

Conversely, assume h̃σ,γ(y, x) = 0. From inequality (13) we have hσ(y, x) ≥ 0. On
the other side, since y is the minimum point of hσ(·, x), part (a) with γ = 1 implies
hσ(y, x) ≤ 0. Thus hσ(y, x) = 0, and since y is the unique minimizer of hσ(·, x), we
can conclude that x = y.

(d) From (c) we have h̃σ,γ(y, x) ≤ 0. When h̃σ,γ(y, x) < 0, then part (b) implies

f ′(x; y − x) < 0. When h̃σ,γ(y, x) = 0, from (c) we obtain y = x and, therefore,
f ′(x; y − x) = 0. Conversely, assume f ′(x; y − x) = 0. This implies

0 = ∇f0(x)T (y − x) + f ′
1(x; y − x) ≤ ∇f0(x)T (y − x) + f1(y) − f1(x) ≤ h̃σ,γ(y, x).

Since h̃σ,γ(y, x) ≤ 0, we necessarily have h̃σ,γ(y, x) = 0.
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The following proposition completely characterizes the stationary points of (1) in
two equivalent ways: as fixed points of the operator p(·;hσ), i.e., the solutions of the
equation x = p(x;hσ), or as roots of the composite function rσ,γ(x) = h̃σ,γ(p(x;hσ), x).

Proposition 2.3. Let S ⊆ R
q, σ ∈ S, hσ, h̃σ,γ be defined as in (9) and (12),

γ ∈ [0, 1], x ∈ Ω, and y = p(x;hσ). The following statements are equivalent:
(a) x is stationary for problem (1);
(b) x = y;
(c) h̃σ,γ(y, x) = 0.

Proof. (a) ⇐⇒ (b) Assume that x = y. Then hσ(·, x) achieves its minimum at x
and the stationarity condition applied to it yields h′

σ(x, x; z − x) ≥ 0 for all z ∈ R
n.

Recalling (10), we have h′
σ(x, x; z − x) = f ′(x; z − x); hence x is a stationary point

for problem (1).
Conversely, let x ∈ Ω be a stationary point of (1) and assume by contradiction

that x �= y. Then, by Proposition 2.2 (d), we obtain f ′(x, y−x) < 0, which contradicts
the stationarity assumption on x.

(b) ⇐⇒ (c) See Proposition 2.2 (c).

In the following sections, we will study iterative optimization algorithms based
on the knowledge that the negative sign of h̃σ,γ(y, x) indicates a descent direction
at x. At each iterate x(k), we will use the symbol y(k) to indicate the minimizer of
hσ(k)(·, x(k)): y(k) = p(x(k);hσ(k)). This minimizer may be difficult to compute. We
therefore introduce the symbol ỹ(k) to indicate an approximation of y(k) of which,
initially, we only ask h̃σ(k),γ(ỹ(k), x(k)) < 0.

3. A line-search algorithm based on a modified Armijo rule. In this
section we consider the modified Armijo rule described in Algorithm LS, which is a
generalization of the one in [35]. Indeed the rule proposed in [35] is recovered when dσ
is chosen as in (7) and γ ∈ [0, 1). In the following we will prove that Algorithm LS is
well defined and classical properties of the Armijo condition still hold for this modified
case.

The modified Armijo line-search procedure represents an inner loop in the itera-
tive optimization algorithm that will be presented in subsection 3.1. We prefer not to
introduce explicitly an inner iteration counter, in order not to complicate notation.

Algorithm LS Modified Armijo line-search algorithm.

Let {x(k)}k∈N, {ỹ(k)}k∈N be two sequences of points in Ω, and let {σ(k)}k∈N be a
sequence of parameters in S. Choose some δ, β ∈ (0, 1), γ ∈ [0, 1]. For all k ∈ N

compute λ(k) as follows:
1. Set λ(k) = 1 and d(k) = ỹ(k) − x(k).
2. If

(14) f(x(k) + λ(k)d(k)) ≤ f(x(k)) + βλ(k)Δ(k)

where

(15) Δ(k) = h̃σ(k),γ(ỹ(k), x(k))

Then go to step 3.

Else set λ(k) = δλ(k) and go to step 2.
3. End
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Here and in the following we define the function hσ(·, ·) as in (9) and, for the sake
of simplicity, make the following assumption:

(H0) dσ ∈ D(Ω, S), where Ω = dom(f1) and S ⊆ R
q is a compact set.

Proposition 3.1. Let {x(k)}k∈N, {ỹ(k)}k∈N be two sequences of points in Ω, let
{σ(k)}k∈N be a sequence of parameters in S ⊆ R

q, and let γ ∈ [0, 1]. Assume that

(16) h̃σ(k),γ(ỹ(k), x(k)) < 0

for all k. Then the line-search Algorithm LS is well defined; i.e., for each k ∈ N

the loop at step 2 terminates in a finite number of steps. If, in addition, we assume
that {x(k)}k∈N and {ỹ(k)}k∈N are bounded sequences and f(x(k+1)) ≤ f(x(k)), then we
have that Δ(k) = h̃σ(k),γ(ỹ(k), x(k)) is bounded. Assuming also that

(17) lim
k→∞

f(x(k)) − f(x(k) + λ(k)d(k)) = 0,

where λ(k) and d(k) are computed with Algorithm LS, then we have

lim
k→∞

h̃σ(k),γ(ỹ(k), x(k)) = 0.

Proof. We prove first that the loop at step 2 of Algorithm LS terminates in a
finite number of steps for any k ∈ N. Assume by contradiction that there exists a
k ∈ N such that Algorithm LS performs an infinite number of reductions; thus, for
any j ∈ N, we have

βΔ(k) <
f(x(k) + δjd(k)) − f(x(k))

δj

=
f0(x(k) + δjd(k)) − f0(x(k))

δj
+

f1(x
(k) + δjd(k)) − f1(x(k))

δj

≤ f0(x(k) + δjd(k)) − f0(x(k))

δj
+

δjf1(x
(k) + d(k)) + (1 − δj)f1(x(k)) − f1(x(k))

δj

=
f0(x(k) + δjd(k)) − f0(x(k))

δj
+ f1(ỹ

(k)) − f1(x(k)),

where the second inequality is obtained by means of the Jensen inequality applied to
the convex function f1. Taking limits on the right-hand side for j → ∞, we obtain

βΔ(k) ≤ ∇f0(x(k))Td(k) + f1(ỹ
(k)) − f1(x(k))

≤ ∇f0(x(k))Td(k) + f1(ỹ
(k)) − f1(x(k)) + γdσ(k)(ỹ(k), x(k))

= Δ(k) < 0,

where the second inequality follows from the nonnegativity of dσ ∈ D(Ω, S) and the
last one from (16). Since 0 < β < 1, this is an absurdum.

Assume now that {x(k)}k∈N, {ỹ(k)}k∈N are bounded sequences and that f(x(k+1))
≤ f(x(k)). We show that Δ(k) = h̃σ(k),γ(ỹ(k), x(k)) is bounded. By assumption (16),

h̃σ(k),γ(ỹ(k), x(k)) is bounded from above. We show that it is also bounded from below.
Indeed we have

h̃σ(k),γ(ỹ(k), x(k)) = ∇f0(x(k))T (ỹ(k) − x(k)) + γdσ(k)(ỹ(k), x(k)) + f1(ỹ(k)) − f1(x(k))

≥ ∇f0(x(k))T (ỹ(k) − x(k)) + f1(ỹ(k)) − f1(x(k))

= ∇f0(x(k))T (ỹ(k) − x(k)) + f1(ỹ(k)) − f(x(k)) + f0(x
(k))

≥ ∇f0(x(k))T (ỹ(k) − x(k)) + f1(ỹ(k)) − f(x(0)) + f0(x(k)),
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VARIABLE METRIC INEXACT LINE-SEARCH-BASED METHODS 899

where the first inequality follows from the nonnegativity of dσ, the next line is obtained
by adding and subtracting f0(x(k)), and the last one is a consequence of f(x(k+1)) ≤
f(x(k)).

Because f1 is proper and convex, there exists a supporting hyperplane, i.e., there
exist a, b ∈ R

n such that f1(u) ≥ aTu + b for all u ∈ R
n. Thus,

h̃σ(k),γ(ỹ(k), x(k)) ≥ ∇f0(x(k))T (ỹ(k) − x(k)) + aT ỹ(k) + b− f(x(0)) + f0(x(k)).

The right-hand side is a continuous function of x(k) and ỹ(k). As these are assumed
to lie on a closed and bounded set, the left-hand side is bounded (from below) as well.

We now show that the only limit point of Δ(k) is zero. We observe that from (16)
and (17) we obtain

(18) 0 = lim
k→∞

f(x(k)) − f(x(k) + λ(k)d(k)) = β lim
k→∞

Δ(k)λ(k).

Assume that there exists a subset of indices K ⊆ N such that limk∈K,k→∞ Δ(k) =
Δ̄ ∈ R, with Δ̄ < 0. By (18), this implies that

(19) lim
k∈K,k→∞

λ(k) = 0.

Denote by K̄ ⊆ K a set of indices such that limk∈K̄,k→∞ σ(k) = σ̄, limk∈K̄,k→∞ x(k) =

x̄, and limk∈K̄,k→∞ ỹ(k) = ỹ for some σ̄ ∈ S, x̄, ỹ ∈ Ω. From (19) we have that for any
sufficiently large index k ∈ K̄, Algorithm LS makes at least a reduction; this means
that

β(λ(k)/δ)Δ(k) < f(x(k) + (λ(k)/δ)d(k)) − f(x(k))

for all sufficiently large k ∈ K̄. Repeating the same arguments employed in the first
part of the proof, we obtain

βΔ(k) <
f0(x(k) + (λ(k)/δ)d(k)) − f0(x(k))

λ(k)/δ
+ f1(ỹ(k)) − f1(x(k))

≤ f0(x(k) + (λ(k)/δ)d(k)) − f0(x(k))

λ(k)/δ
+ f1(ỹ(k)) − f1(x(k)) + γdσ(ỹ(k), x(k)).

Taking limits on both sides for k ∈ K̄, k → ∞, since {d(k) = ỹ(k)−x(k)}k∈N is bounded,
and by (19) we obtain βΔ̄ ≤ Δ̄ < 0, which is an absurdum, being 0 < β < 1.

We prove also the following useful lemma.

Lemma 3.1. Let {x(k)}k∈N, {ỹ(k)}k∈N be two sequences of points in Ω, let {σ(k)}k∈N

be a sequence of parameters in S ⊆ R
q, and let γ ∈ [0, 1]. Assume that

(20) f(x(k+1)) ≤ f(x(k) + λ(k)d(k)), d(k) = ỹ(k) − x(k),

where ỹ(k) satisfies (16) and λ(k) is computed by Algorithm LS for any k ∈ N. Suppose
that f is bounded from below. Then we have

(21) 0 ≤ −
∞∑
k=0

λ(k)h̃σ(k),γ(ỹ(k), x(k)) < ∞.D
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Proof. Denote by � ∈ R a lower bound for f , i.e., � ≤ f(x) for all x ∈ R
n.

Inequalities (14) and (20) can be combined as

−βλ(k)h̃σ(k),γ(ỹ(k), x(k)) ≤ f(x(k)) − f(x(k+1)).

Summing the previous inequality for k = 0, . . . , j gives
(22)

−β

j∑
k=0

λ(k)h̃σ(k),γ(ỹ(k), x(k)) ≤
j∑

k=0

(f(x(k))−f(x(k+1))) = f(x(0))−f(x(j+1)) ≤ f(x(0))−�.

Thus, inequality (21) follows.

The easiest way to satisfy the sufficient-decrease condition (20) is to simply set
x(k+1) = x(k) + λ(k)d(k). Our analysis applies to any general scheme satisfying (20);
therefore we do not need to impose x(k+1) = x(k) + λ(k)d(k).

3.1. A class of line-search-based algorithms. Proposition 3.1 allows the
convergence analysis of a wide class of descent methods based on the Armijo condition
(14). The crucial ingredients of these methods are

• a descent direction d(k) = ỹ(k) − x(k), where ỹ(k) is a suitable approximation
of the point p(x(k);hσ);

• the sufficient decrease of the objective function between two successive it-
erations, which has to amount to at least λ(k)h̃σ,γ(ỹ(k), x(k)), where λ(k) is
determined by the backtracking procedure given in Algorithm LS.

Theorem 3.1. Let {x(k)}k∈N, {ỹ(k)}k∈N be two sequences of points in Ω, and let
{σ(k)}k∈N ⊂ S and γ ∈ [0, 1]. Assume that there exists a limit point x̄ of {x(k)}k∈N,
and let K ′ ⊆ N be a subset of indices such that limk∈K′,k→∞ x(k) = x̄ ∈ Ω. Assume
that for any k ∈ N we have

f(x(k+1)) ≤ f(x(k) + λ(k)d(k)), d(k) = ỹ(k) − x(k),

where λ(k) is computed by Algorithm LS, ỹ(k) satisfies (16), and there exists K ′′ ⊆ K ′

such that

(23) lim
k∈K′′,k→∞

hσ(k)(ỹ(k), x(k)) − hσ(k)(y(k), x(k)) = 0, with y(k) = p(x(k);hσ(k)).

Then x̄ is a stationary point for problem (1).

Proof. First, we notice that Algorithm LS is well defined, since (16) holds. We
observe that, since hσ(k) is strongly convex with modulus of convexity m and y(k) is
its minimum point, we have

(24)
m

2
‖z − y(k)‖2 ≤ hσ(k)(z, x(k)) − hσ(k)(y(k), x(k)) ∀z ∈ R

n.

Setting z = ỹ(k) in the previous inequality and using (23) gives

(25) lim
k∈K′′,k→∞

‖ỹ(k) − y(k)‖ = 0.

By continuity of the operator p(x;hσ), since {x(k)}k∈K′ is bounded, {y(k)}k∈K′ is
bounded as well. Thus, (25) implies that {ỹ(k)}k∈K′′ is also bounded and there exists
a limit point ȳ of {ỹ(k)}k∈N. We define K ⊆ K ′′ such that limk∈K,k→∞ ỹ(k) = ȳ and
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limk∈K,k→∞ σ(k) = σ̄. By continuity of the operator p(x;hσ) with respect to all its
arguments, (25) implies that ȳ = p(x̄;hσ̄).

Consider now the sequence {f(x(k))}k∈N. From assumption (20) it follows that

(26) f(x(k+1)) ≤ f(x(k) + λ(k)d(k)) ≤ f(x(k)).

Thus, the sequence {f(x(k))}k∈N is monotone nonincreasing, and therefore it converges
to some f̄ ∈ R̄. Since f is lower semicontinuous and x̄ is a limit point of {x(k)}k∈N,
we have

f̄ = lim
k→∞

f(x(k)) = lim
k→∞

f(x(k+1)) ≥ f(x̄).

The previous inequality implies that f̄ ∈ R, and this fact, together with inequality
(26), gives

lim
k→∞

f(x(k)) − f(x(k) + λ(k)d(k)) = 0.

Thus we can apply Proposition 3.1 and obtain

lim
k→∞,k∈K

h̃σ(k),γ(ỹ(k), x(k)) = 0.

Combining the previous equality with (13) and (23) yields

0 = lim
k→∞,k∈K

h̃σ(k),γ(ỹ(k), x(k)) ≤ lim
k→∞,k∈K

hσ(k)(ỹ(k), x(k)) = lim
k→∞,k∈K

hσ(k)(y(k), x(k)).

Since hσ(k)(y(k), x(k)) ≤ 0, this implies limk→∞,k∈K hσ(k)(y(k), x(k)) = 0. Expressing
inequality (24) for z = x(k), we can write

m

2
‖x(k) − y(k)‖2 ≤ hσ(k)(x(k), x(k)) − hσ(k)(y(k), x(k)) = −hσ(k)(y(k), x(k))

k→∞,k∈K−→ 0.

Thus, we proved that ȳ = x̄, and by Proposition 2.3 we have that x̄ is stationary.

Let us now discuss assumption (23) in Theorem 3.1, concerning the inexact so-
lution of the minimum problem in (11). Assumption (16) guarantees that d(k) =
ỹ(k) − x(k) is a descent direction, which is needed for the line-search algorithm. How-
ever, it is not sufficient to ensure that the limit points are stationary; we also need to
assume that (23) holds.

As a counterexample, consider the case n = 1, f0(x) = x2/2, f1(x) = 0, dσ(x, y) =
(x − y)2/2, β = δ = 1/2. The sequence x(k+1) = x(k) + λ(k)(ỹ(k) − x(k)) with
λ(k) = 1, ỹ(k) = x(k) − (1/2)k+1 satisfies all the assumptions of Theorem 3.1 except

(23). However, starting from x(0) = 2, the sequence writes as x(k) = 1+(1/2)k
k→∞→ 1,

while the only stationary point is 0.
Assumption (23) could be replaced by requiring that f1 is continuous and (25)

holds. Clearly, (23) cannot be checked directly, but it is very general. In the fol-
lowing sections, we consider two implementable conditions (the first one is limited to
Euclidean distance functions; the second one is more general) that imply (23), and
in sections 4.1–4.4 we show how ỹ(k) can be computed in practice without knowing
p(x(k);hσ(k)).
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3.2. Inexact proximal evaluation: ε-approximations. In this section we
assume that dσ has the form (7) and, in this case, we describe a sufficient condition
for (23).

We observe that y = p(x;hσ) = proxDαf1(x − αD−1∇f0(x)) if and only if 0 ∈
∂hσ(y, x), that is,

(27)
1

α
D(z − y) ∈ ∂f1(y),

where z = x − αD−1∇f0(x). Borrowing the ideas in [34, 36], we consider a relaxed
version of (27) and study the properties of any point ỹ satisfying the inclusion

(28)
1

α
D(z − ỹ) ∈ ∂εf1(ỹ),

where ε ∈ R≥0 and ∂εf(z) is the ε-subdifferential of a convex function f : Rn → R̄ at
a point z ∈ R

n, defined as [38, p. 82]

(29) ∂εf(z) = {w ∈ R
n : f(x) ≥ f(z) + (x− z)Tw − ε ∀x ∈ R

n}.

Lemma 3.2. Let dσ be defined as in (7) and let x ∈ Ω. Assume that y = p(x;hσ)
and that ỹ satisfies (28) for some ε ∈ R≥0. Then ỹ ∈ Ω and we have

(a) hσ(ỹ, x) − hσ(y, x) ≤ ε;
(b) ‖ỹ − y‖2 ≤ αμε for all μ ∈ R>0 with 1

μ ≤ λmin(D), λmin being the smallest
eigenvalue of D.

Proof. Since we have ∂εhσ(ỹ, x) ⊇ { 1
αD(ỹ − z) + w : w ∈ ∂εf1(ỹ)} (see [38,

Theorem 2.4.2 (viii)]), inclusion (28) implies 0 ∈ ∂εhσ(ỹ, x), which, by definition (29)
of ε-subdifferential, is equivalent to

(30) hσ(w, x) ≥ hσ(ỹ, x) − ε ∀w ∈ R
n.

Recall that hσ( · , x) is strongly convex with modulus m = 2/(αμ) and y is its
minimizer. This yields

1

αμ
‖ỹ − y‖2 ≤ hσ(ỹ, x) − hσ(y, x) ≤ ε,

where the rightmost inequality follows from (30) with w = y.

The previous result combined with Theorem 3.1 directly implies the following
corollary.

Corollary 3.1. Let 0 < αmin ≤ αmax, γ ∈ [0, 1], μ ≥ 1. Assume that {αk}k∈N ⊂
[αmin, αmax], {Dk}k∈N ⊂ Mμ, {εk}k∈N ⊂ R≥0, limk→∞ εk = 0. Let {x(k)}k∈N,
{ỹ(k)}k∈N be two sequences of points in Ω such that, for any k ∈ N, (20) holds,
where λ(k) is computed by Algorithm LS and ỹ(k) satisfies (16) and

(31)
1

αk
Dk(z(k) − ỹ(k)) ∈ ∂εkf1(ỹ(k)),

with z(k) = x(k) − αkD
−1
k ∇f0(x(k)). Then any limit point of the sequence {x(k)}k∈N

is stationary for problem (1).

D
ow

nl
oa

de
d 

04
/1

3/
21

 to
 1

55
.1

85
.1

04
.1

50
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

VARIABLE METRIC INEXACT LINE-SEARCH-BASED METHODS 903

3.3. Inexact proximal evaluation: η-approximations. A different approach
to defining a suitable approximation of the operator (11) is based on the following
definition:

(32) Pη(x;hσ) = {ỹ ∈ Ω : hσ(ỹ, x) ≤ ηhσ(y, x), where y = p(x;hσ)}

for some η ∈ (0, 1]. This idea of inexactness was introduced first in [7] to approximate
the projection operator onto a convex set in the context of scaled gradient projection
methods for smooth optimization. Clearly, if

(33) ỹ ∈ Pη(x;hσ),

then hσ(ỹ, x) ≤ 0 and hσ(ỹ, x) = 0 if and only if hσ(y, x) = 0, which implies ỹ = y.
The following theorem establishes a convergence result under the condition ỹ(k) ∈

Pη(x(k);hσ).

Theorem 3.2. Let η ∈ (0, 1], 0 ≤ γ ≤ 1, {σ(k)}k∈N ⊂ S, and {x(k)}k∈N ⊂ Ω
satisfy (20), where λ(k) is computed by Algorithm LS, with

(34) ỹ(k) ∈ Pη(x(k);hσ(k)).

Then either the iterate x(k) for some k is stationary for problem (1) or any limit point
x̄ of {x(k)}k∈N is stationary for problem (1).

Proof. Set y(k) = p(x(k);hσ(k)) and first observe that γ ≤ 1 and (34) imply

(35) h̃σ(k),γ(ỹ(k), x(k)) ≤ hσ(k)(ỹ(k), x(k)) ≤ ηhσ(k)(y(k), x(k)) ≤ 0.

If at some iterate k ∈ N we have h̃σ(k),γ(ỹ(k), x(k)) = 0 and, as a consequence,

hσ(k)(y(k), x(k)) = 0, then, by Proposition 2.3, x(k) is a stationary point for prob-
lem (1).

Otherwise h̃σ(k),γ(ỹ(k), x(k)) < 0 for all k ∈ N, and thus (16) holds. Consider now

a limit point x̄ ∈ Ω of {x(k)}k∈N (if one exists) such that limk→∞,k∈K′ x(k) = x̄ for
some set of indices K ′ ⊆ N.

We first prove that {ỹ(k)}k∈K′ is bounded, using the strong convexity of hσ(k)(·, x(k)).
From (34),

(36) hσ(k)(ỹ(k), x(k)) − hσ(k)(y(k), x(k)) ≤ (η − 1)hσ(k)(y(k), x(k)).

Since hσ(k)(·, x(k)) is strongly convex with modulus of convexity m, and y(k) is the
minimizer of hσ(k)(·, x(k)),

m

2
‖ỹ(k) − y(k)‖2 ≤ hσ(k)(ỹ(k), x(k)) − hσ(k)(y(k), x(k)) ≤ (η − 1)hσ(k)(y(k), x(k)).

Since y(k) depends continuously on x(k), when {x(k)}k∈K′ is bounded, and all lie in
a closed set, then {y(k)}k∈K′ is also bounded. Recalling Proposition 3.1, we have
that {h̃σ(k),γ(ỹ(k), x(k))}k∈K′ is bounded from below; then, using inequalities (35),

we can conclude that hσ(k)(y(k), x(k)) is also bounded from below for k ∈ K ′, and
thus {ỹ(k)}k∈K′ is bounded. We define K ⊆ K ′ as the set of indices such that
limk∈K,k→+∞ σ(k) = σ̄, limk∈K,k→+∞ y(k) = ȳ for some σ̄ ∈ S, ȳ ∈ Ω. Thanks to
the continuity of the operator (11), the set K is well defined, since the sequences
{x(k)}k∈K′ , {σ(k)}k∈N are bounded, and, moreover, we have ȳ = p(x̄;hσ̄). Reasoning
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904 S. BONETTINI, I. LORIS, F. PORTA, AND M. PRATO

as in the proof of Theorem 3.1, the existence of a limit point guarantees that (17)
is satisfied. Then, by Proposition 3.1, we obtain limk→∞,k∈K h̃σ(k),γ(ỹ(k), x(k)) = 0.
Combining this with (34), we also have

0 = lim
k→∞,k∈K

h̃σ(k),γ(ỹ(k), x(k)) ≤ lim
k→∞,k∈K

hσ(k)(ỹ(k), x(k)) ≤ η lim
k→∞,k∈K

hσ(k)(y(k), x(k)),

which, since hσ(k)(y(k), x(k)) ≤ 0, implies

(37) lim
k→∞,k∈K

hσ(k)(y(k), x(k)) = 0.

Invoke again the strong convexity of hσ(k)( · , x(k)) to obtain

m

2
‖x(k) − y(k)‖2 ≤ hσ(k)(x(k), x(k)) − hσ(k)(y(k), x(k)) = −hσ(k)(y(k), x(k)),

which, together with (37), gives limk→∞,k∈K ‖y(k) − x(k)‖2 = 0. Thus, ȳ = x̄, and by
Proposition 2.3, we conclude that x̄ is stationary.

3.4. Remarks. Different notions of inexactness have been proposed in the liter-
ature (see [34, 36] and references therein), especially in the context of proximal point
methods, with the aim of approximating the resolvent operator, and some of them can
be considered also in our framework. A synthetic description of possible inexactness
notions and their relationships is given in Figure 1.

1
αD(z − ỹ) ∈ ∂εf1(ỹ)

⇒
0 ∈ ∂εhσ(ỹ, x) ⇔ hσ(ỹ, x) ≤ hσ(y, x) + ε ⇒ ‖ỹ − y‖2 ≤ κε

⇒
dist(0, ∂hσ(ỹ, x)) ≤ ε

(when D = I)

Fig. 1. Connection of different inexactness notions, under the assumption (7). The proof of
the implications is given in Lemma 3.2 and in [34, Proposition 1].

It is difficult to insert the inexactness criterion (33) in the scheme shown in Fig-
ure 1, since the shape of Pη in (33) depends on x, while the implications in Figure 1 are
independent of x. In general, we observe that from inequality (36) and by definition
of ε-subdifferential we have

0 ∈ ∂εkhσ(k)(ỹ(k), x(k)), with εk = (η − 1)hσ(k)(y(k), x(k)).

We give a pictorial example of the sets of admissible approximations ỹ of the exact
minimizer y defined by conditions (33) and (28) in Figure 2. This example refers to
the case where f1(x) = ιΩ(x) is the indicator function of a convex closed set Ω ⊆ R

n.
Choosing the Euclidean metric, i.e., (7) with D = I, α = 1, as distance function, the
operator p(x;hσ) reduces to the Euclidean projection of the point z = x − ∇f0(x)
onto Ω. Moreover, condition (28) becomes

(38) ỹ ∈ Ω and (w − ỹ)T (z − ỹ) ≤ ε ∀w ∈ Ω.

As well explained in [34, 36], from a geometrical point of view, a point ỹ ∈ Ω satisfies
(38) if and only if Ω is contained in the negative half-space determined by the hyper-
plane of equation (w− ỹ)T (z − ỹ)/‖z− ỹ‖ = ε/‖z− ỹ‖, which is normal to z − ỹ at a
distance ε/‖z − ỹ‖ from ỹ.
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x

z

y

Ω

x

z

y

Ω

√

Fig. 2. Example with f1(x) = ιΩ(x), dσ as in (7) with α = 1, D = I. Shaded portions show
the set Pη(x; hσ) defined in (32) (left panel) and the set of points ỹ satisfying (28) (right panel).

On the other side, setting γ = 1 for simplicity, we have h̃σ,γ( · , x) = hσ( · , x) =
1
2‖ · −z‖2 − 1

2‖x− z‖2 + ιΩ( · ) − ιΩ(x). Thus, the set Pη(x;hσ) is the intersection

of the set Ω with the ball centered in z of radius
√
η‖y − z‖2 + (1 − η)‖x− z‖2.

In general, one of the main differences between definitions (34) and (31) consists
in the fact that in the latter case the distance between the approximated and the
exact minimum of hσ(k)( · , x(k)), i.e., ‖ỹ(k) − y(k)‖, can be controlled by the inde-
pendent parameter εk, while in the other case this distance is algorithm and iteration
dependent. This fact can be exploited to obtain a stronger convergence result, as
shown in the next section.

3.5. Convergence analysis in the convex case with ε-approximations.

3.5.1. Convergence. In this section, we assume that f0 is convex, and in this
case we prove a stronger convergence result for a specific line-search algorithm where
the descent direction is defined by means of an ε-approximation, provided that the
sequence of parameters {εk}k∈N is summable and that the sequence of the matrices
Dk satisfies suitable assumptions. The following theorem is a generalization of Theo-
rem 3.1 in [10]. Further results on forward–backward variable metric algorithms which
apply to problems of the form (1) when f0 has a Lipschitz continuous gradient can be
found in the recent papers [16, 19]. We stress that in all our analysis we do not need
any Lipschitz continuity of the gradient of f0 and, moreover, the sequence of errors
‖ỹ(k)− y(k)‖ needs to be square summable, while the convergence result stated in [16,
Theorem 4.1] is given under the stronger assumption that ‖ỹ(k) − y(k)‖ is summable.

Theorem 3.3. Let 0 < αmin ≤ αmax, γ ∈ [0, 1], {αk}k∈N ⊂ [αmin, αmax]. Assume
that f0 in (1) is convex and the solution set X∗ of problem (1) is not empty. Let
{x(k)}k∈N be the sequence generated as

x(k+1) = x(k) + λ(k)d(k), d(k) = ỹ(k) − x(k),

where λ(k) is obtained by means of the backtracking procedure in Algorithm LS, with
ỹ(k) satisfying h̃σ(k),γ(ỹ(k), x(k)) < 0. Moreover assume that

(H1) ỹ(k) satisfies (31), where the sequence {εk}k∈N is summable, i.e.,
∑∞

k=0 εk <
∞;
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(H2) {Dk}k∈N ⊂ Mμ, where μ ≥ 1 and

Dk+1 � (1 + ζk)Dk, {ζk}k∈N ⊂ R≥0, and

∞∑
k=0

ζk < ∞.

Then the sequence {x(k)}k∈N converges to a solution of (1).

Proof. First of all we recall the basic norm equality

(39) ‖a− b‖2D + ‖b− c‖2D − ‖a− c‖2D = 2(a− b)TD(c− b),

which holds for any a, b, c ∈ R
n. Let x̂ ∈ X∗. By definition of ỹ(k) we have

f1(w) ≥ f1(ỹ(k)) +
1

αk
(z(k) − ỹ(k))TDk(w − ỹ(k)) − εk ∀w ∈ R

n,

which, recalling that z(k) = x(k) − αkD
−1
k ∇f0(x(k)), can also be written as

(ỹ(k)−x(k))TDk(w−ỹ(k)) ≥ αk

(
f1(ỹ(k)) − f1(w) + ∇f0(x(k))T (ỹ(k) − w)

)
−αkεk ∀w ∈ R

n.

For w = x̂, the previous inequality gives

(ỹ(k) − x(k))TDk(x̂− x(k)) ≥ αk

(
f1(ỹ(k)) − f1(x̂) + ∇f0(x(k))T (x(k) − x̂)

)
− αkεk

+
(
ỹ(k) − x(k) + αkD

−1
k ∇f0(x(k))

)T
Dk(ỹ(k) − x(k))

≥ αk

(
f1(ỹ(k)) − f1(x(k))+f(x(k)) − f(x̂)

)
+‖ỹ(k) − x(k)‖2Dk

(40)

+ αk∇f0(x(k))T (ỹ(k) − x(k)) − αkεk

≥ ‖ỹ(k) − x(k)‖2Dk
− αkεk

+ αk

(
f1(ỹ(k)) − f1(x(k)) + ∇f0(x(k))T (ỹ(k) − x(k))

)
=

1

(λ(k))2
‖x(k+1) − x(k)‖2Dk

− αkεk(41)

+ αk

(
f1(ỹ(k)) − f1(x(k)) + ∇f0(x(k))T (ỹ(k) − x(k))

)
,

where the second inequality is obtained by adding and subtracting f1(x(k)) and by
the convexity of f0, the third one from the fact that x̂ is a minimum point, and the
last one by definition of x(k+1). By equality (39) with a = x(k+1), b = x(k), c = x̂,
D = Dk we obtain

‖x(k+1) − x̂‖2Dk
= ‖x(k) − x̂‖2Dk

+ ‖x(k+1) − x(k)‖2Dk
− 2(x(k) − x(k+1))TDk(x(k) − x̂)

= ‖x(k) − x̂‖2Dk
+ ‖x(k+1) − x(k)‖2Dk

− 2λ(k)(ỹ(k) − x(k))TDk(x̂− x(k))

(41)

≤ ‖x(k) − x̂‖2Dk
+

(
1 − 2

λ(k)

)
‖x(k+1) − x(k)‖2Dk

− 2αkλ
(k)
(
∇f0(x(k))T (ỹ(k) − x(k))+f1(ỹ

(k))−f1(x
(k))
)

+2αkλ
(k)εk

= ‖x(k) − x̂‖2Dk
+

(
1 − 2

λ(k)
+

γ

λ(k)

)
‖x(k+1) − x(k)‖2Dk

− 2αkλ
(k)h̃σ(k),γ(ỹ(k), x(k)) + 2αkλ

(k)εk

≤ ‖x(k) − x̂‖2Dk
− 2αkλ

(k)h̃σ(k),γ(ỹ(k), x(k)) + 2αkλ
(k)εk,(42)
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where the third equality is obtained by adding and subtracting the term γλ(k)‖ỹ(k)−
x(k)‖2Dk

= γ/λ(k)‖x(k+1) − x(k)‖2Dk
and the last inequality follows from the fact that

γ ∈ [0, 1]. From assumption (H2) we obtain

‖x(k+1) − x̂‖2Dk+1
≤ (1 + ζk)‖x(k+1) − x̂‖2Dk

≤ (1 + ζk)‖x(k) − x̂‖2Dk
− 2αk(1 + ζk)λ(k)h̃σ(k),γ(ỹ(k), x(k))

+ 2αkλ
(k)(1 + ζk)εk

≤ (1 + ζk)‖x(k) − x̂‖2Dk
− 2αmaxζλ

(k)h̃σ(k),γ(ỹ(k), x(k)) + 2αmaxζεk,(43)

where we set ζ = 1+maxk ζk. Then from [27, Lemma 2.2.2] we can conclude that the
sequence {‖x(k) − x̂‖2Dk

}k∈N converges. In particular, since Dk ∈ Mμ, {x(k)}k∈N is
bounded and thus has at least one limit point. Let us denote such a limit point by x∞.
By Corollary 3.1, x∞ is stationary; in particular, since f is convex, it is a minimum
point, i.e., x∞ ∈ X∗, and thus {‖x(k) − x∞‖2Dk

}k∈N converges. Let {x(ki)}i∈N be a

subsequence of {x(k)}k∈N which converges to x∞. By the norm inequality (5)

‖x(ki) − x∞‖2Dki
≤ μ‖x(ki) − x∞‖ i→∞−→ 0.

Since {‖x(k)−x∞‖2Dk
}k∈N converges, this implies that its limit is zero. Invoking again

(5), we obtain

1

μ
‖x(k) − x∞‖2 ≤ ‖x(k) − x∞‖2Dk

k→∞−→ 0,

which allows us to conclude that {x(k)}k∈N converges to x∞.

In the following we present a variation of Theorem 3.3 where the tolerance pa-
rameters εk are adaptively chosen, instead of being a predefined summable sequence.

Theorem 3.4. Let 0 < αmin ≤ αmax, γ ∈ [0, 1], {αk}k∈N ⊂ [αmin, αmax]. Assume
that f0 in (1) is convex and the solution set X∗ of problem (1) is not empty. Let
{x(k)}k∈N be the sequence generated as

x(k+1) = x(k) + λ(k)d(k), d(k) = ỹ(k) − x(k),

where λ(k) is obtained by means of the backtracking procedure in Algorithm LS, with
ỹ(k) satisfying h̃σ(k),γ(ỹ(k), x(k)) < 0. Moreover assume that

(H1′) ỹ(k) satisfies (31), where the sequence {εk}k∈N satisfies

(44) εk ≤ −τh̃σ(k),γ(ỹ(k), x(k))

for some τ > 0,
and that hypothesis (H2) of Theorem 3.3 holds. Then the sequence {x(k)}k∈N converges
to a solution of (1).

Proof. By substituting (44) in (43) we obtain

‖x(k+1) − x̂‖2Dk+1
≤ (1 + ζk)‖x(k) − x̂‖2Dk

− 2αmaxζ(1 + τ)λ(k)h̃σ(k),γ(ỹ(k), x(k)).

The remainder of the proof follows exactly from the same arguments employed in
Theorem 3.3.
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We show in section 4.4 how the conditions (31) and (44) can be satisfied in
practice.

Assumption (H2) is analogous to the one proposed in [16, 19]. A special case of
it is given by

(H2′) {Dk}k∈N ⊂ Mμk
, where μ2

k = 1 + ξk, ξk ≥ 0,
∞∑
k=0

ξk < ∞.

Thanks to inequality (5), for any x ∈ R
n we have

xT (Dk+1−μkμk+1Dk)x = xTDk+1x−μkμk+1x
TDkx ≤ μk+1‖x‖2−μkμk+1

‖x‖2
μk

= 0,

which implies Dk+1 � μkμk+1Dk. Moreover, μkμk+1 can be written as μkμk+1 =
1 + ζk, where ζk =

√
(1 + ξk)(1 + ξk+1) − 1. Since limx→0

√
1 + x/x = 1/2, it follows

that
∑∞

k=0 ξk and
∑∞

k=0 ζk have the same behavior. Then we can conclude that (H2′)
implies (H2).

We also observe that, employing the same arguments above, we can prove that
μk+1μkDk+1 � Dk, and as a consequence, (H2′) also implies that (1 + ζk)Dk+1 � Dk

with
∑∞

k=0 ζk < ∞. In practice, (H2′) says that the scaling matrices have to converge
to the identity matrix at a certain rate, while (H2) implies the convergence to some
symmetric positive definite matrix (see Lemma 2.3 in [19]).

3.5.2. Convergence rate analysis. In this section we analyze the convergence
rate of the objective function values f(x(k)) to the optimal value f∗, proving that
f(x(k+1))− f∗ = O( 1

k ). This complexity result is obtained using the same settings as
Theorem 3.4, but further assumes that the gradient of f0 is Lipschitz continuous on
the domain of f1. This Lipschitz assumption guarantees that the sequence {λ(k)}k∈N

is bounded away from zero. Before giving the main results, we need to prove the
following lemma, which actually does not require the Lipschitz assumption.

Lemma 3.3. Let x(k), ỹ(k) ∈ Ω. If ỹ(k) satisfies (31), with 0 < αk ≤ αmax and
Dk ∈ Mμ, then

(45)
1

2αmaxμ
‖ỹ(k) − x(k)‖2 ≤ −h̃σ(k),γ(ỹ(k), x(k)) + εk.

Proof. For any w ∈ ∂εkf1(ỹ(k)) we have

hσ(k)(ỹ(k), x(k)) = ∇f0(x(k))T (ỹ(k) − x(k)) +
1

2αk
‖ỹ(k) − x(k)‖2Dk

+ f1(ỹ
(k)) − f1(x(k))

≤ ∇f0(x(k))T (ỹ(k) − x(k)) +
1

2αk
‖ỹ(k) − x(k)‖2Dk

+ wT (ỹ(k) − x(k)) + εk.

In particular, the previous inequality holds true for w = 1
αk

Dk(z(k) − ỹ(k)) (see (31)).
This results in

h̃σ(k),γ(ỹ(k), x(k)) ≤ hσ(k)(ỹ(k), x(k))

≤ ∇f0(x(k))T (ỹ(k) − x(k)) +
1

2αk
‖ỹ(k) − x(k)‖2Dk

+
1

αk
(x(k) − αkD

−1
k ∇f0(x(k)) − ỹ(k))TDk(ỹ(k) − x(k)) + εk

= − 1

2αk
‖ỹ(k) − x(k)‖2Dk

+ εk ≤ − 1

2αmaxμ
‖ỹ(k) − x(k)‖2 + εk,

where the last inequality follows from (5).
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Proposition 3.2. Let {x(k)}k∈N be a sequence of points in Ω and {d(k)}k∈N a se-
quence of descent directions such that d(k) = ỹ(k)−x(k) and (45) holds. Let {λ(k)}k∈N

be the steplength sequence computed by Algorithm LS and assume that ∇f0 is Lipschitz
continuous on Ω and that (44) holds. Then there exists λmin ∈ R>0 such that

(46) λ(k) ≥ λmin ∀k ∈ N.

Proof. In view of (44)–(45), setting a = αmaxμ, one obtains

(47) ‖d(k)‖2 ≤ −2a(1 + τ)h̃σ(k) ,γ(ỹ(k), x(k)).

If ∇f0 is Lipschitz continuous on Ω with Lipschitz constant L, then from the descent
lemma [6, p. 667] we have

(48) f0(x(k) + λd(k)) ≤ f0(x(k)) + λ∇f0(x(k))T d(k) +
L

2
λ2‖d(k)‖2,

where λ ∈ [0, 1]. By combining inequalities (47) and (48) we further obtain

f0(x(k) + λd(k)) ≤ f0(x(k)) + λ∇f0(x(k))T d(k) − a(1 + τ)Lλ2h̃σ(k),γ(ỹ(k), x(k)).

Summing f1(x(k) + λd(k)) on both sides of the previous relation and applying the
Jensen inequality f1(x(k) +λd(k)) ≤ (1−λ)f1(x(k)) +λf1(ỹ(k)) to the right-hand side
yields

f(x(k) + λd(k)) ≤ f(x(k)) − λf1(x(k)) + λf1(ỹ(k)) + λ∇f0(x(k))Td(k)

− aLλ2(1 + τ)h̃σ(k) ,γ(ỹ(k), x(k))

≤ f(x(k)) − λf1(x(k)) + λf1(ỹ(k)) + λ∇f0(x(k))Td(k)

− aLλ2(1 + τ)h̃σ(k) ,γ(ỹ(k), x(k)) +
λγ

2
‖d(k)‖2Dk

= f(x(k)) + λh̃σ(k),γ(ỹ(k), x(k)) − aLλ2(1 + τ)h̃σ(k) ,γ(ỹ(k), x(k))

= f(x(k)) + λ (1 − aL(1 + τ)λ) h̃σ(k),γ(ỹ(k), x(k)).

The previous inequality ensures that the Armijo condition

(49) f(x(k) + λd(k)) ≤ f(x(k)) + λβh̃σ,γ(ỹ(k), x(k))

is satisfied, for all k ∈ N, when 1 − aL(1 + τ)λ ≥ β, that is, for all λ such that
λ ≤ (1 − β)/(aL(1 + τ)). If λ(k) is the steplength computed by Algorithm LS and
the backtracking loop is performed at least once, then λ = λ(k)/δ does not satisfy
inequality (49), which means λ(k) > (1 − β)δ/(aL(1 + τ)). Thus, the steplength
sequence {λ(k)}k∈N satisfies inequality (46) with λmin = (1 − β)δ/(aL(1 + τ)).

Based on these premises, we are now ready to prove the convergence rate result.
The proof of the theorem follows the arguments developed in Theorem 3.1 of [5] by
modifying them to the case of inexact proximal computation, variables metrics, and
the presence of the Armijo line search. In [16] where the authors also take into account
variable metrics and inexact computation, no convergence rate results are given. In the
case of exact proximal computation and without variable metrics, a different proof
of the convergence rate is given in [12]. In contrast to the results mentioned, the
explicit expression of the Lipschitz constant of ∇f0 is not needed in order to choose
the line-search parameter in the correct range (the Armijo rule guarantees sufficient
decrease and the steplength parameters are free).
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Theorem 3.5. Assume that the hypotheses of Theorem 3.4 hold and, in addition,
that the gradient of f0 is Lipschitz continuous on Ω. Let f∗ be the optimal function
value for problem (1). Then

f(x(k+1)) − f∗ = O
(

1

k

)
.

Proof. If we do not neglect the term f(x(k))− f(x̂) = f(x(k))− f∗ in (40) and in
all the subsequent inequalities, instead of (42) we obtain

‖x(k+1) − x̂‖2Dk
≤ ‖x(k) − x̂‖2Dk

+ 2αkλ
(k)
(
−h̃σ(k),γ(ỹ(k), x(k)) + εk

)
− 2λ(k)αk(f(x(k)) − f∗),

and hence

‖x(k+1) − x̂‖2Dk+1
≤ (1 + ζk)‖x(k+1) − x̂‖2Dk

≤ (1 + ζk)‖x(k) − x̂‖2Dk
+ 2αkλ

(k)(1 + ζk)(−h̃σ(k),γ(ỹ(k), x(k)) + εk)

− 2λ(k)(1 + ζk)αk(f(x(k)) − f∗)
(44)

≤ (1 + ζk)‖x(k) − x̂‖2Dk
− 2αmax(1 + τ)ζλ(k)h̃σ(k),γ(ỹ(k), x(k))

+ a(f∗ − f(x(k))),

where we set ζ = 1 + maxk ζk, a = 2λminαmin, where λmin is defined in Proposition
3.2. Summing the previous inequality from 0 to k gives

‖x(k+1) − x̂‖2Dk+1
≤ ‖x(0) − x̂‖2D0

+

k∑
j=0

ζj‖x(j) − x̂‖2Dj

− 2αmax(1 + τ)ζ

k∑
j=0

λ(j)h̃σ(j) ,γ(ỹ(j), x(j)) + a

⎛
⎝(k + 1)f∗ −

k∑
j=0

f(x(j))

⎞
⎠

≤ ‖x(0) − x̂‖2D0
+ Mζ̄ − 2αmax(1 + τ)ζ

β
(f(x(0)) − f∗) + a

⎛
⎝(k + 1)f∗ −

k∑
j=0

f(x(j))

⎞
⎠ ,

where the second inequality follows
• by setting ζ̄ =

∑∞
j=0 ζj ;

• from the fact that {‖x(k) − x̂‖2Dk
}k∈N is a convergent sequence (see Theo-

rem 3.4), and thus there exists M such that ‖x(j) − x̂‖2Dj
≤ M ; and

• from (22).
Adding the positive quantity a(f(x(0))−f∗) to the right-hand side of the last inequal-
ity, we obtain

‖x(k+1) − x̂‖2Dk+1
≤ ‖x(0) − x̂‖2D0

+ Mζ̄ − 2αmax(1 + τ)ζ

β
(f(x(0)) − f∗)

+ a

⎛
⎝kf∗ −

k∑
j=1

f(x(j))

⎞
⎠ .
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Moreover, exploiting the inequality

0 ≤
k∑

j=0

j(f(x(j)) − f(x(j+1))) =
k∑

j=1

f(x(j)) − kf(x(k+1))

gives

‖x(k+1)−x̂‖2Dk+1
≤ ‖x(0)−x̂‖2D0

+Mζ̄−2αmax(1 + τ)ζ

β
(f(x(0))−f∗)+ak(f∗−f(x(k+1))).

Rearranging terms yields

f(x(k+1)) − f(x̂) ≤ 1

ak

(
‖x(0) − x̂‖2D0

+ Mζ̄ − 2
αmax(1 + τ)ζ

β
(f(x(0)) − f(x̂))

)
,

establishing the result.

4. Practical computation of η- and ε-approximations.

4.1. Computation of the inexact proximal: η-approximations. In this
section we discuss how to compute a point ỹ(k) such that (34) holds, i.e., satisfying

(50) hσ(k)(ỹ(k), x(k)) ≤ ηhσ(k)(y(k), x(k)), with y(k) = p(x(k);hσ),

for a given η ∈ (0, 1], without knowing y(k). A special case of this problem, corre-
sponding to the case f1 = ιΩ, where Ω is the intersection of closed, convex sets and
the metric is given by (7), is considered in [7].

Satisfying inequality (50) is possible when, for each k, one can compute a sequence
{al}l∈N ⊂ R such that

(51) al ≤ hσ(k)(y(k), x(k)) ∀l ∈ N and lim
l→∞

al = hσ(k)(y(k), x(k)),

and a sequence of points {ỹ(k,l)}l∈N such that

(52) lim
l→∞

hσ(k)(ỹ(k,l), x(k)) = hσ(k)(y(k), x(k)).

In practice, l should be considered as the index of an inner loop for computing ỹ(k).
Indeed, when (51) holds, we also have

(53) ηal ≤ ηhσ(k)(y(k), x(k)) ∀l ∈ N.

Moreover, for all sufficiently large l we have al > hσ(k)(y(k), x(k))/η, which, together
with (53), gives

hσ(k)(y(k), x(k)) < ηal ≤ ηhσ(k)(y(k), x(k)).

Then, if one considers any method generating a sequence ỹ(k,l) such that (52) holds,
the stopping criterion

(54) hσ(k)(ỹ(k,l), x(k)) ≤ ηal

for the inner iterations is well defined. If l is the smallest integer such that (54) is
satisfied, then the point ỹ(k) = ỹ(k,l) satisfies (50). In the following sections we show
how to compute a sequence al satisfying (51) in the interesting case of the Euclidean
metric.
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4.2. Composition with a linear operator. In this section we assume that
f1(x) is given by

(55) f1(x) = g(Ax),

where A ∈ R
m×n and g : Rm → R̄ is a convex function. Moreover, we choose dσ as

in (7). We consider the minimum problem (11), which can be written in equivalent
primal-dual and dual form as

min
y∈Rn

hσ(k)(y, x(k)) = min
y∈Rn

max
v∈Rm

Fσ(k) (y, v, x(k)) = max
v∈Rm

Ψσ(k)(v, x(k)).

The primal-dual problem can be obtained from the primal one by applying the def-
inition of the convex conjugate g∗, which gives g(Ax) = maxv∈Rm vTAx − g∗(v),
obtaining
(56)

Fσ(k)(y, v, x(k)) =
1

2αk
‖y− z(k)‖2Dk

+ yTAT v − g∗(v) − f1(x(k)) − αk

2
‖∇f0(x

(k))‖2
D−1

k

with z(k) = x(k) − αkD
−1
k ∇f0(x(k)). The dual problem is obtained by computing

the minimum of the primal-dual function with respect to y, which is given by y =
z(k)−αkD

−1
k AT v, and substituting it in (56), obtaining the explicit expression of the

dual function

Ψσ(k)(v, x(k)) = − 1

2αk
‖αkD

−1
k AT v − z(k)‖2Dk

− g∗(v) − f1(x(k)) − αk

2
‖∇f0(x

(k))‖2
D−1

k

+
1

2αk
‖z(k)‖2Dk

.

By definition of the primal-dual and dual functions, the following inequalities hold:

hσ(k)(y, x(k)) ≥ Fσ(k) (y, v, x(k)) ≥ Ψσ(k)(v, x(k)) ∀y ∈ R
n, v ∈ R

m.

In particular, the previous inequality holds for y = y(k). Then an approximation ỹ(k)

of y(k) can be computed by applying any method to the dual problem

(57) max
v∈Rm

Ψσ(k)(v, x(k)),

generating a sequence {v(l)}l∈N such that Ψσ(k)(v(l), x(k)) converges to the maximum
of the dual function Ψσ(k)( · , x(k)). As a consequence of this, setting ỹ(k,l) = z(k) −
αkD

−1
k AT v(l), a point satisfying (50) can be found by stopping the dual iterations

when

(58) hσ(k)(ỹ(k,l), x(k)) ≤ ηΨσ(k)(v(l), x(k))

is satisfied, i.e., (54) with al = Ψσ(k)(v(l), x(k)).
For example, one can apply a forward–backward method [18], such as ISTA or its

accelerated version (FISTA [5]), to the dual problem. As an alternative, the saddle
point problem

min
y∈Rn

max
v∈Rm

Fσ(k)(y, v, x(k))
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can be addressed, for example, with a primal-dual method such as [14, 26], using (58)
as stopping condition. More generally, a point ỹ(k) ∈ Pη(x(k);hσ(k)) can be obtained
by computing two sequences, {v(l)}l∈N, {ỹ(k,l)}l∈N, such that

lim
l→∞

Ψσ(k)(v(l), x(k)) = max
v∈Rm

Ψσ(k)(v, x(k)) = min
y∈Rn

hσ(k)(y, x(k)) = lim
l→∞

hσ(k)(ỹ(k,l), x(k)),

stopping the iterates when (58) is met.
Remarks. We observe that (55) includes also the case where f1(x) is defined as

f1(x) =
∑r

i=1 gi(Aix), where Ai ∈ R
mi×n, gi : Rmi → R. Indeed, formulation (55) is

recovered by setting A = [AT
1 AT

2 . . . AT
r ]T ∈ R

m×n with m =
∑r

i=1 mi. In this case
the dual variable v can be partitioned as v = [vT1 vT2 . . . vTr ]T , where vi ∈ R

mi and
g∗(v) =

∑r
i=1 g

∗
i (vi) (see [38, Theorem 2.3.1 (iv)]).

4.3. Preserving feasibility. Clearly, any point ỹ(k,l) satisfying (58), where v(l)

is generated by any converging algorithm applied to the dual or the primal-dual
problem, belongs to the domain of hσ(·, x(k)), i.e., to the set Ω. Indeed, for any l,
v(l) belongs to the domain of the dual function Ψσ(k)(·, x(k)) and, as a consequence,
(54) implies that hσ(k)(ỹ(k,l), x(k)) is finite. However, the stopping criterion (54) may
require a very large number of inner iterations l to be satisfied, and, in addition, the
primal sequence points ỹ(k,l) may be feasible only in the limit. For these reasons,
we propose also considering the sequence ȳ(k,l) = PΩ(ỹ(k,l)), where PΩ denotes the
Euclidean projection onto the set Ω. If, at some inner iteration l, the inequality

(59) h̃σ(k),γ̄(ȳ(k,l), x(k)) ≤ ηΨσ(k)(v(l), x(k))

is satisfied, this clearly means that ȳ(k,l) ∈ Pη(x(k);hσ) (i.e., (34) is satisfied), and we
can set ỹ(k) = ȳ(k,l). We observe that when ỹ(k,l) converges to y(k) as l diverges, the
stopping criterion (59) is well defined, since ȳ(k,l) also converges to y(k).

4.4. Computation of the inexact proximal: ε-approximations. In this
section we show how to compute a point satisfying inclusion (31), for any given εk ∈
R≥0, when the convex function f1 in (1) has the form (55). Our arguments are
obtained by extending those in [36], which are recovered by setting Dk = I. As done
in section 4.2, we will make use of the duality theory. In particular, we define the
primal-dual gap function as

(60) Gσ(k) (y, v, x(k)) = hσ(k)(y, x(k)) − Ψσ(k)(v, x(k)).

We also have the following results.

Lemma 4.1. Let f : Rn → R̄, g : Rm → R̄ be two convex functions, A ∈ R
m×n.

If f(x) = g(Ax), then f∗(AT y) ≤ g∗(y) for all y ∈ R
m.

Proof. By the definition of the convex conjugate we have

f∗(AT y) = sup
x∈Rn

xTAT y − f(x) = sup
x∈Rn

(Ax)T y − g(Ax)

= sup
z∈Rm,z=Ax

zTy − g(z) ≤ sup
z∈Rm

zT y − g(z) = g∗(y).

Proposition 4.1. Let εk ∈ R≥0. If

(61) Gσ(k)(ỹ(k), v, x(k)) ≤ εk,

with ỹ(k) = z(k) − αkD
−1
k AT v, for some v ∈ R

m, then (31) is satisfied.
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Proof. From the definition of the primal-dual gap, a simple computation shows
that

Gσ(k) (ỹ(k), v, x(k)) =
1

αk
‖αkD

−1
k AT v‖2Dk

− vTAz(k) + f1(z(k) − αkD
−1
k AT v) + g∗(v)

= sup
w∈Rm

1

αk
‖αkD

−1
k AT v‖2Dk

− vTAz(k) + wT (z(k) − αkD
−1
k AT v)

− f∗
1 (w) + g∗(v)

= sup
w∈Rm

(w −AT v)T (z(k) − αkD
−1
k AT v) − f∗

1 (w) + g∗(v)

≥ sup
w∈Rm

(w −AT v)T (z(k) − αkD
−1
k AT v) − f∗

1 (w) + f∗
1 (AT v),

where the last inequality follows from Lemma 4.1. Thus, if (61) holds, the previous
inequality yields

(w−AT v)T (z(k)−αkD
−1
k AT v)−f∗

1 (w)+f∗
1 (AT v) ≤ Gσ(k)(ỹ(k), v, x(k)) ≤ εk ∀w ∈ R

m.

Rearranging terms, the previous inequality writes also as

f∗
1 (w) ≥ f∗

1 (AT v) + (w −AT v)T (z(k) − αkD
−1
k AT v) − εk ∀w ∈ R

m,

which, from definition (29), is equivalent to z(k)−αkD
−1
k AT v ∈ ∂εkf

∗
1 (AT v). Finally,

by applying [38, Theorem 2.4.4 (iv)], we obtain AT v ∈ ∂εkf1(z
(k) − αkD

−1
k AT v).

Recalling that ỹ(k) = z(k) − αkD
−1
k AT v, which implies AT v = Dk(z(k) − ỹ(k))/αk,

(31) follows.

Proposition 4.1 suggests that for computing ỹ(k) satisfying the assumptions of
Corollary 3.1, we can use the same iterative approaches described at the end of sec-
tion 4.1, stopping the iterates when

(62) Gσ(k) (ỹ(k,l), v(l), x(k)) ≤ εk and h̃σ(k),γ(ỹ(k,l), x(k)) < 0.

4.5. Equivalence between η- and ε-approximations. Any η-approximation
ỹ(k) satisfying (58) for some v(l) ∈ R

m is also an ε-approximation, where ε =
−τhσ(k)(ỹ(k), x(k)) and τ = −1 + 1/η. In fact, in these settings, (58) implies
hσ(k)(ỹ(k), x(k)) − Ψσ(k)(v(l), x(k)) ≤ −τhσ(k) (ỹ(k), x(k)), and, as shown in section 4.4,
this means that ỹ(k) is an ε-approximation with ε = −τhσ(k)(ỹ(k), x(k)). Thus, any
point computed by an iterative procedure stopped when (58) is satisfied is both an η-
and an ε-approximation.

5. Numerical illustration. In order to validate the proposed approach, we con-
sider two relevant image restoration problems, whose variational formulations consist
in minimizing the sum of a discrepancy functional plus a regularization term. The
first test problem is convex; the second test problem is nonconvex. An outline of the
algorithm that we will use is shown in Algorithm VMILA, and it is the same for both
convex and nonconvex problems.

5.1. Image deconvolution in presence of Poisson noise. Following the
Bayesian paradigm, when the noise affecting the data is of Poisson type, a typical
choice for measuring the discrepancy of a given image x from the observed data b is
the following Kullback–Leibler divergence:

KL(x, b) =
n∑

i=1

bi log

(
bi
xi

)
+ xi − bi.
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Taking into account also the distortion due to the image acquisition system, which
we assume to be modeled through a linear operator H ∈ R

n×n, and a constant
background term g, the data discrepancy is defined as

f0(x) = KL(Hx + g1, b),

where 1 ∈ R
n is the vector of all ones. Moreover, when one wants to preserve edges in

the restored image and also the nonnegativity of the pixel values, the regularization
term can be chosen as

(63) f1(x) = ρ

n∑
i=1

‖∇ix‖ + ιRn
≥0

(x),

where ρ > 0 is a regularization parameter multiplying the total variation functional
[33] and ∇i ∈ R

2×n represents the discrete-gradient operator at the pixel i. Clearly,

the function f1(x) has the form (55), with A =
(∇T

1 · · · ∇T
n I

)T ∈ R
3n×n. In

this case v ∈ R
3n and g∗ is the indicator function of the set B2

0,ρ × · · · × B2
0,ρ × R

n
≤0,

where B2
0,ρ ⊂ R

2 is the 2-dimensional Euclidean ball centered in 0 with radius ρ.
In our experiments we assume that H corresponds to a convolution operator asso-

ciated to a Gaussian kernel, with reflective boundary conditions, so that the matrix-
vector products involving H can be performed via the discrete cosine transform [24].

We define a set of test problems in the following way: A reference image is
rescaled so that the pixel values lie in a specified range (this is for simulating different
noise levels); then it is blurred by convolution with a Gaussian kernel with standard
deviation σpsf and the background is added. Finally, Poisson noise is simulated with
the MATLAB imnoise function, obtaining the noisy blurred image b. The details
of each test problem are listed in Table 1. The regularization parameter ρ has been
manually tuned to obtain a visually satisfactory solution. For each test problem we
numerically compute the optimal value f∗ by running the considered algorithms for
a huge number of iterations, retaining the smallest value found.

Algorithm VMILA Variable metric inexact line-search algorithm (VMILA).

Choose 0 < αmin ≤ αmax, μ ≥ 1, δ, β ∈ (0, 1), γ ∈ [0, 1], η ∈ (0, 1], x(0) ∈ Ω.
For k = 0, 1, 2, . . .

1. Choose αk ∈ [αmin, αmax], 1 ≤ μk ≤ μ, and Dk ∈ Mμk
;

2. Compute ỹ(k): compute a dual vector v(l) ∈ R
m and the corresponding primal

vector ỹ(k,l) such that (58) is satisfied, then set ỹ(k) = ỹ(k,l).
3. Set d(k) = ỹ(k) − x(k);
4. Compute the steplength parameter λ(k) with Algorithm LS;
5. Set x(k+1) = x(k) + λ(k)d(k).

We implement our inexact algorithm, which is summarized in Algorithm VMILA,
in a MATLAB environment with the following settings:

Step 1: Metric selection. The scaling matrix Dk is chosen mimicking the split-
gradient idea [25] that was developed for smooth optimization problems under a non-
negativity constraint. In particular, the gradient of the smooth part of the objective
function is split into a positive and a negative part, which gives rise to a class of
iterative optimization algorithms that can be interpreted as scaled gradient methods.
As the gradient of the KL function can easily be split in the same way, we propose
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Table 1

Test problems description.

Problem Ref. image Size Range σpsf g ρ

cameraman MATLAB cameraman 2562 [0, 1000] 1.4 5 0.0091
micro [37, Figure 8] 1282 [1,69] 3.2 0.5 0.09
phantom Shepp–Logan phantom 2562 [0, 1000] 1.4 10 0.004

adopting this procedure in this case, too. Skipping the technical details, the scaling
matrix is defined as the diagonal matrix with positive entries:

[Dk]ii = max

(
min

(
x
(k)
i

[HT1]i
, μk

)
,

1

μk

)−1

,

where μk =
√

1 + 1010/k2, so that assumption (H2′) is satisfied. We choose a large
initial range for the scaling matrix selection to allow more freedom of choice at the
first iterates, where the benefits of the scaling matrix are more relevant [9].

Step 1: Steplength selection. The parameter αk is chosen by the same strategy
used, e.g., in [11, 30, 29] (based on a suitable alternation of the Barzilai–Borwein
rules), and its value is constrained in the interval [αmin, αmax] with αmin = 10−5,
αmax = 102.

Step 2: Computation of the approximated proximal point ỹ(k). We experimented
with different inner solvers applied on the primal-dual or on the dual formulation of
the inner problem. The best performances have been obtained using FISTA applied to
the dual problem (57), in the variant proposed in [13], which ensures the convergence
not only of the objective function values to the optimal one but also of the iterates to
the minimum point. In particular, we set tl = (l + a− 1)/2, with a = 2.1 [13, formula
(5)]. For brevity, we report only the results obtained stopping the inner iterates when
criterion (59) is met, which corresponds to both an η- and an ε-approximation (see
section 4.5). A maximum number of 1500 inner iterations is imposed. The initial
guess of the inner loop at the first outer iterate is the vector of all zeros, while at all
successive iterates the inner solver is initialized with the dual solution computed at
the previous iterate.

Other parameter setting. The line-search parameters δ, β, γ have been set, respec-
tively, equal to 0.5, 10−4, 1. These are the standard choices for the Armijo parameters
in the constrained optimization setting [11, 29, 30], where it has been remarked that
the performance of the line-search algorithm is not sensitive to modification of the
standard values.

All the following results have been obtained on a PC equipped by an Intel Core
i7-2620M processor with CPU at 2.70GHz and 8GB of RAM, running Windows 7 OS
and MATLAB R2010b. The MATLAB routines and the datasets are available at the
website http://www.oasis.unimore.it/site/home/software.html.

We investigate first the impact of the inexactness parameter η choice on the over-
all method. In Figure 3 the relative decrease of the objective function values in the
first 500 iterates is reported with respect to both the iteration number (first row) and
the computational time, in seconds (second row). It can be observed that a higher
precision can accelerate the progress toward the solution, but this usually results in a
very large number of inner iterations, and, consequently, it is extremely time consum-
ing (for example, for the test problem cameraman with η = 10−6, 10−2, 5 · 10−1 the
mean number of inner iterations per outer iteration is 28, 54, 409, respectively). This
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Fig. 3. Algorithm VMILA with different choices for η. Relative decrease of the objective func-
tion values with respect to the outer iteration number (top row) and to the computational time
(bottom row). Left column: cameraman. Middle column: micro. Right column: phantom.

is typical of inexact algorithms based on the iterative solution of an inner subproblem.
We find that a good balance between convergence speed and computational cost is
obtained by allowing a relatively large tolerance, corresponding to η = 10−6.

As a further benchmark, we compare our algorithm to Chambolle and Pock’s
method (CP) [14], which, referring to the notation used in their paper, has been
implemented setting G(x) = ιRn

≥0
(x) and F (Kx) = KL(Hx + g, b) + β

∑n
i=1 ‖∇ix‖,

with K =
(
HT ,∇T

1 , . . . ,∇T
n

)T
. In this way the resolvent operator associated to F ∗

can be computed in closed form. In Figure 4, we compare the behavior of our approach
(with η = 10−6) with CP (2000 iterations) for different choices of its two parameters,
σ and τ (once τ is selected, σ is chosen such that τσL2 = 1, where L = ‖K‖). We
observe that CP is quite sensitive to these parameters, and it is difficult to devise,
in general, a more convenient choice, while our approach with the parameter settings
described above seems to be always comparable to the best results obtained by CP
in terms of objective function decrease with respect to both the iteration number and
the computational time.

We have run the simulations also for Dk = I. In this case, the identity scaling
matrix gave rise to slower convergence as compared to the scaling matrix described
above. The advantages of using a variable metric have already been noticed in many
smooth optimization problems arising in different applications [8, 9, 10, 11]. Our
results are coherent with what has been already observed in the recent literature.

5.2. Image deconvolution in the presence of signal-dependent Gaussian
noise. In the second example, we study the image reconstruction problem described
in [15], where the observed data b ∈ R

n are governed by the model

bi = (Hxtrue)i + σi((Hxtrue)i)wi,

where xtrue ∈ R
n is the true image to be recovered, H ∈ R

n×n is a matrix with
nonnegative entries associated to the acquisition system, w = (w1, . . . , wn)T are drawn
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Fig. 4. Comparison between Algorithm VMILA (η = 10−6) and the CP algorithm with different
choices of parameters. Relative decrease of the objective function values with respect to the outer
iteration number (top row) and to the computational time (bottom row). Left column: cameraman.
Middle column: micro. Right column: phantom.

from Gaussian distribution with zero mean and covariance matrix In, and σi : R →
R>0 is defined as σi(u) =

√
aiu + ci, with ai ∈ R≥0, ci ∈ R>0, for all i = 1, . . . , n.

As explained in [15], an approximation of the true image xtrue can be found as a
solution of the minimization problem (1) where the data discrepancy function is given
by

(64) f0(x) =
1

2

n∑
i=1

((Hx)i − bi)
2

ai(Hx)i + ci
+ log(ai(Hx)i + ci),

which is nonconvex and smooth in dom(f0) = {x ∈ R
n : ai(Hx)i + ci > 0 ∀i =

1, . . . , n}, and the regularization term is chosen as in (63).
Since ci > 0 for all i = 1, . . . , n and H has nonnegative entries, it holds that

dom(f0) ⊃ dom(f1). We also have that ∇f0 is Lipschitz continuous in dom(f1), but
there is no explicit expression for the Lipschitz constant.

We evaluate the performance of the suggested method in comparison with the
variable-metric forward–backward (VMFB) algorithm [15] (the implementation is pro-
vided by the authors [31]). In particular, we analyze the test problem jet plane [31].
In this case, the operator H is a convolution with a truncated Gaussian function of
size 7 × 7, ai = ci = 1 for all i = 1, . . . , n, and ρ = 0.03. The approximation ỹ(k)

of the proximal operator is handled in the same way as in the previous test problem.
The parameters αmin = 10−5, αmax = 102, δ = 0.5, β = 10−4, γ = 1, η = 10−6 used
in the MATLAB implementation are also the same as in the previous test problem.

We consider two diagonal scaling matrices Dk corresponding to two choices for
the metric:

MM (Dk)−1
ii = max{min{(Ak)ii, μ}, 1

μ}, where Ak is defined in [15, formula (36)]
with ε = 0. This matrix Ak is chosen such that the quadratic function
Q(x, x(k)) = f0(x(k)) + ∇f0(x(k))T (x − x(k)) + 1

2‖x − x(k)‖2Ak
is a majorant

function for f0, i.e., f0(x) ≤ Q(x, x(k)) for all x ∈ dom(f1).

D
ow

nl
oa

de
d 

04
/1

3/
21

 to
 1

55
.1

85
.1

04
.1

50
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

VARIABLE METRIC INEXACT LINE-SEARCH-BASED METHODS 919

0 500 1000 1500
10

−8

10
−6

10
−4

10
−2

10
0

k

|f
(x

(k
) )
−
f
∗
|/
f
∗

 

 

scal = MM      
scal = SGM
VMFB

0 50 100 150 200
10

−8

10
−6

10
−4

10
−2

10
0

time(s)

|f
(x

(k
) )
−
f
∗
|/
f
∗

 

 

scal = MM     
scal = SGM
VMFB

Fig. 5. Image deconvolution in the presence of signal-dependent Gaussian noise. Relative
decrease of the objective function toward the minimum value with respect to the iteration number
(left) and computational time in seconds (right).

SGM (Dk)−1
ii = max{min{ x

(k)
i

Vi(x(k))+ε
, μ}, 1

μ}, where ε is set to the machine precision

and V (x(k)) is defined as V (x(k)) = HT s(k) with

s
(k)
i = (Hx)i

ai((Hx)i + bi) + 2ci
2(ai(Hx)i + ci)2

+
ai

2(ai(Hx)i + ci)
.

This scaling matrix is again chosen mimicking the split-gradient idea [25].
The bound μ of the diagonal entries of Dk is set equal to 1010. The stepsize parameter
αk is chosen using the Barzilai–Borwein rules as before.

In our experiments, both methods achieve the same value of the objective function
in the limit, which we denote by f∗ (this is not true in general for nonconvex problems).
Thus we can compare the convergence properties of the algorithms by showing the
decay toward this value (it has been precomputed by running 5000 iterations of all
methods and retaining the smallest value).

The results have been obtained on a PC equipped by an Intel Core i7-3667U
processor with CPU at 2.0GHz and 8GB of RAM, running Linux Ubuntu 64-bit OS
and MATLAB R2012a.

Figure 5 reports the relative decrease of the objective function with respect to
the minimum value f∗ as a function of the iteration number and of the computational
time. We observe a faster decrease of the objective function for Algorithm VMILA.

6. Conclusions and future work. In this paper we presented and analyzed
an inexact variable-metric forward–backward method based on an Armijo-type line-
search along a suitable descent direction. The inexactness of the method lies in the
possibility of using an approximation of the proximal operator, while the underlying
metric may change at each iteration and also non-Euclidean metrics are allowed.
We performed the convergence analysis of the method, obtaining results in both the
nonconvex and convex cases and providing also a convergence rate estimate in the
latter one. The main strengths of the method are listed below.

• For nonconvex problems we proved a weak convergence result (Theorem 3.1)
which holds true for inexact computation of the proximal point (for which
we provide implementable conditions). This result is not given in [1, 15], nor
under the weaker Kurdyka–�Lojasiewicz hypothesis.

• The convergence is ensured by a line-search procedure, which does not depend
on any user-supplied parameter (actually the constants γ, β, δ have to be
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chosen, but the behavior of the whole algorithm is not sensitive to these
choices). On the other side, the “free” parameter σ in (11) could be exploited
to accelerate the convergence speed.

• The possibility of using at each iterate an approximation of p(x(k);hσ) makes
the method well suited for the solution of a wide variety of structured prob-
lems.

• The numerical results on large-scale problems show that the performances of
the inexact method are promising and comparable with those of state-of-the-
art methods.

Future work will be addressed especially to deepen the theoretical and numerical
analysis in the nonconvex case, investigating the possibility of obtaining convergence
results stronger than those stated in Theorems 3.1 and 3.2, at least for some classes
of nonconvex functions (e.g., Kurdyka–�Lojasiewicz functions).

Acknowledgment. We thank the anonymous reviewers for their careful reading
of our manuscript and their many insightful comments and suggestions.
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