5,164 research outputs found

    IDRA: a novel protocol architecture for networked embedded devices

    Get PDF

    An improved formulation of Jaccard's theory of the electric properties of ice

    Full text link
    In the standard derivation of Jaccard's theory of the electric properties of ice, no fundamental distinction is made between bound and free charges. This leads to some didactical problems like the ad hoc introduction of the so-called 'configuration vector' Ω\bf{\Omega}. However, when the two types of charges are distinguished, it becomes clear that Ω\bf{\Omega} is redundant and proportional to the polarisation density. We also show that Jaccard's formulation contains a wrong formula for the electric susceptibility and that the correct Φ\Phi factor can be derived from a straightforward kinetic approach (which Jaccard failed to do).Comment: Submission to SciPos

    Seasonal variation in soil and plant water potentials in a Bolivian tropical moist and dry forest

    Get PDF
    We determined seasonal variation in soil matric potentials (¿soil) along a topographical gradient and with soil depth in a Bolivian tropical dry (1160 mm y-1 rain) and moist forest (1580 mm y-1). In each forest we analysed the effect of drought on predawn leaf water potentials (¿pd) and drought response (midday leaf water potential at a standardized ¿pd of -0.98 MPa; ¿md) of saplings of three tree species, varying in shade-tolerance and leaf phenology. ¿soil changed during the dry season and most extreme in the dry forest. Crests were drier than slopes and valleys. Dry-forest top soil was drier than deep soil in the dry season, the inverse was found in the wet season. In the moist forest the drought-deciduous species, Sweetia fruticosa, occupied dry sites. In the dry forest the short-lived pioneer, Solanum riparium, occupied wet sites and the shade-tolerant species, Acosmium cardenasii drier sites. Moist-forest species had similar drought response. The dry-forest pioneer showed a larger drought response than the other two species. Heterogeneity in soil water availability and interspecific differences in moisture requirements and drought response suggest great potential for niche differentiation. Species may coexist at different topographical locations, by extracting water from different soil layers and/or by doing so at different moments in tim

    Alternate marking-based network telemetry for industrial WSNs

    Get PDF
    For continuous, persistent and problem-free operation of Industrial Wireless Sensor Networks (IWSN), it is critical to have visibility and awareness into what is happening on the network at any one time. Especially, for the use cases with strong needs for deterministic and real-time network services with latency and reliability guarantees, it is vital to monitor network devices continuously to guarantee their functioning, detect and isolate relevant problems and verify if all system requirements are being met simultaneously. In this context, this article investigates a light-weight telemetry solution for IWSNs, which enables the collection of accurate and continuous flowbased telemetry information, while adding no overhead on the monitored packets. The proposed monitoring solution adopts the recent Alternate Marking Performance Monitoring (AMPM) concept and mainly targets measuring end-to-end and hopby-hop reliability and delay performance in critical application flows. Besides, the technical capabilities and characteristics of the proposed solution are evaluated via a real-life implementation and practical experiments, validating its suitability for IWSNs

    Survey on wireless technology trade-offs for the industrial internet of things

    Get PDF
    Aside from vast deployment cost reduction, Industrial Wireless Sensor and Actuator Networks (IWSAN) introduce a new level of industrial connectivity. Wireless connection of sensors and actuators in industrial environments not only enables wireless monitoring and actuation, it also enables coordination of production stages, connecting mobile robots and autonomous transport vehicles, as well as localization and tracking of assets. All these opportunities already inspired the development of many wireless technologies in an effort to fully enable Industry 4.0. However, different technologies significantly differ in performance and capabilities, none being capable of supporting all industrial use cases. When designing a network solution, one must be aware of the capabilities and the trade-offs that prospective technologies have. This paper evaluates the technologies potentially suitable for IWSAN solutions covering an entire industrial site with limited infrastructure cost and discusses their trade-offs in an effort to provide information for choosing the most suitable technology for the use case of interest. The comparative discussion presented in this paper aims to enable engineers to choose the most suitable wireless technology for their specific IWSAN deployment

    Impact of EU duty cycle and transmission power limitations for sub-GHz LPWAN SRDs : an overview and future challenges

    Get PDF
    Long-range sub-GHz technologies such as LoRaWAN, SigFox, IEEE 802.15.4, and DASH7 are increasingly popular for academic research and daily life applications. However, especially in the European Union (EU), the use of their corresponding frequency bands are tightly regulated, since they must confirm to the short-range device (SRD) regulations. Regulations and standards for SRDs exist on various levels, from global to national, but are often a source of confusion. Not only are multiple institutes responsible for drafting legislation and regulations, depending on the type of document can these rules be informational or mandatory. Regulations also vary from region to region; for example, regulations in the United States of America (USA) rely on electrical field strength and harmonic strength, while EU regulations are based on duty cycle and maximum transmission power. A common misconception is the presence of a common 1% duty cycle, while in fact the duty cycle is frequency band-specific and can be loosened under certain circumstances. This paper clarifies the various regulations for the European region, the parties involved in drafting and enforcing regulation, and the impact on recent technologies such as SigFox, LoRaWAN, and DASH7. Furthermore, an overview is given of potential mitigation approaches to cope with the duty cycle constraints, as well as future research directions

    An LSPI based reinforcement learning approach to enable network cooperation in cognitive wireless sensor networks

    Get PDF
    The number of wirelessly communicating devices increases every day, along with the number of communication standards and technologies that they use to exchange data. A relatively new form of research is trying to find a way to make all these co-located devices not only capable of detecting each other's presence, but to go one step further - to make them cooperate. One recently proposed way to tackle this problem is to engage into cooperation by activating 'network services' (such as internet sharing, interference avoidance, etc.) that offer benefits for other co-located networks. This approach reduces the problem to the following research topic: how to determine which network services would be beneficial for all the cooperating networks. In this paper we analyze and propose a conceptual solution for this problem using the reinforcement learning technique known as the Least Square Policy Iteration (LSPI). The proposes solution uses a self-learning entity that negotiates between different independent and co-located networks. First, the reasoning entity uses self-learning techniques to determine which service configuration should be used to optimize the network performance of each single network. Afterwards, this performance is used as a reference point and LSPI is used to deduce if cooperating with other co-located networks can lead to even further performance improvements
    • …
    corecore