173 research outputs found
Extracellular Hsp72 concentration relates to a minimum endogenous criteria during acute exercise-heat exposure
Extracellular heat-shock protein 72 (eHsp72) concentration increases during exercise-heat stress when conditions elicit physiological strain. Differences in severity of environmental and exercise stimuli have elicited varied response to stress. The present study aimed to quantify the extent of increased eHsp72 with increased exogenous heat stress, and determine related endogenous markers of strain in an exercise-heat model. Ten males cycled for 90 min at 50% O2peak in three conditions (TEMP, 20°C/63% RH; HOT, 30.2°C/51%RH; VHOT, 40.0°C/37%RH). Plasma was analysed for eHsp72 pre, immediately post and 24-h post each trial utilising a commercially available ELISA. Increased eHsp72 concentration was observed post VHOT trial (+172.4%) (P<0.05), but not TEMP (-1.9%) or HOT (+25.7%) conditions. eHsp72 returned to baseline values within 24hrs in all conditions. Changes were observed in rectal temperature (Trec), rate of Trec increase, area under the curve for Trec of 38.5°C and 39.0°C, duration Trec ≥ 38.5°C and ≥ 39.0°C, and change in muscle temperature, between VHOT, and TEMP and HOT, but not between TEMP and HOT. Each condition also elicited significantly increasing physiological strain, described by sweat rate, heart rate, physiological strain index, rating of perceived exertion and thermal sensation. Stepwise multiple regression reported rate of Trec increase and change in Trec to be predictors of increased eHsp72 concentration. Data suggests eHsp72 concentration increases once systemic temperature and sympathetic activity exceeds a minimum endogenous criteria elicited during VHOT conditions and is likely to be modulated by large, rapid changes in core temperature
Hsp60 Is Actively Secreted by Human Tumor Cells
Background: Hsp60, a Group I mitochondrial chaperonin, is classically considered an intracellular chaperone with residence in the mitochondria; nonetheless, in the last few years it has been found extracellularly as well as in the cell membrane. Important questions remain pertaining to extracellular Hsp60 such as how generalized is its occurrence outside cells, what are its extracellular functions and the translocation mechanisms that transport the chaperone outside of the cell. These questions are particularly relevant for cancer biology since it is believed that extracellular chaperones, like Hsp70, may play an active role in tumor growth and dissemination. Methodology/Principal Findings: Since cancer cells may undergo necrosis and apoptosis, it could be possible that extracellular Hsps are chiefly the result of cell destruction but not the product of an active, physiological process. In this work, we studied three tumor cells lines and found that they all release Hsp60 into the culture media by an active mechanism independently of cell death. Biochemical analyses of one of the cell lines revealed that Hsp60 secretion was significantly reduced, by inhibitors of exosomes and lipid rafts. Conclusions/Significance: Our data suggest that Hsp60 release is the result of an active secretion mechanism and, since extracellular release of the chaperone was demonstrated in all tumor cell lines investigated, our observations most likel
Administration of M. leprae Hsp65 Interferes with the Murine Lupus Progression
The heat shock protein [Hsp] family guides several steps during protein synthesis, are abundant in prokaryotic and eukaryotic cells, and are highly conserved during evolution. The Hsp60 family is involved in assembly and transport of proteins, and is expressed at very high levels during autoimmunity or autoinflammatory phenomena. Here, the pathophysiological role of the wild type [WT] and the point mutated K409A recombinant Hsp65 of M. leprae in an animal model of Systemic Lupus Erythematosus [SLE] was evaluated in vivo using the genetically homogeneous [NZBxNZW]F1 mice. Anti-DNA and anti-Hsp65 antibodies responsiveness was individually measured during the animal's life span, and the mean survival time [MST] was determined. The treatment with WT abbreviates the MST in 46%, when compared to non-treated mice [p<0.001]. An increase in the IgG2a/IgG1 anti-DNA antibodies ratio was also observed in animals injected with the WT Hsp65. Incubation of BALB/c macrophages with F1 serum from WT treated mice resulted in acute cell necrosis; treatment of these cells with serum from K409A treated mice did not cause any toxic effect. Moreover, the involvement of WT correlates with age and is dose-dependent. Our data suggest that Hsp65 may be a central molecule intervening in the progression of the SLE, and that the point mutated K409A recombinant immunogenic molecule, that counteracts the deleterious effect of WT, may act mitigating and delaying the development of SLE in treated mice. This study gives new insights into the general biological role of Hsp and the significant impact of environmental factors during the pathogenesis of this autoimmune process
Natural Killer Cell Mediated Cytotoxic Responses in the Tasmanian Devil
The Tasmanian devil (Sarcophilus harrisii), the world's largest marsupial carnivore, is under threat of extinction following the emergence of an infectious cancer. Devil facial tumour disease (DFTD) is spread between Tasmanian devils during biting. The disease is consistently fatal and devils succumb without developing a protective immune response. The aim of this study was to determine if Tasmanian devils were capable of forming cytotoxic antitumour responses and develop antibodies against DFTD cells and foreign tumour cells. The two Tasmanian devils immunised with irradiated DFTD cells did not form cytotoxic or humoral responses against DFTD cells, even after multiple immunisations. However, following immunisation with xenogenic K562 cells, devils did produce cytotoxic responses and antibodies against this foreign tumour cell line. The cytotoxicity appeared to occur through the activity of natural killer (NK) cells in an antibody dependent manner. Classical NK cell responses, such as innate killing of DFTD and foreign cancer cells, were not observed. Cells with an NK-like phenotype comprised approximately 4 percent of peripheral blood mononuclear cells. The results of this study suggest that Tasmanian devils have NK cells with functional cytotoxic pathways. Although devil NK cells do not directly recognise DFTD cancer cells, the development of antibody dependent cell-mediated cytotoxicity presents a potential pathway to induce cytotoxic responses against the disease. These findings have positive implications for future DFTD vaccine research
Differential Levels of Stress Proteins (HSPs) in Male and Female Daphnia magna in Response to Thermal Stress: A Consequence of Sex-Related Behavioral Differences?
In two independent experiments, we compared: (1) water depth selection (and accompanying temperature selection) by male and female Daphnia magna under different kinds of environmental stress, including the presence of filamentous cyanobacteria, the risk of predation from fish, and the presence of toxic compounds; and (2) sex-dependent production of heat shock proteins (HSP60, 70, and 90) in response to a sudden change in temperature. Male D. magna selected deep water strata, which offer a relatively stable environment, and thereby avoided the threat of predation and the presence of toxic compounds in surface waters. Correlated with this behavior, males reduce their molecular defenses against stress, such as the production of heat shock proteins (HSPs), and do not maintain the physiological machinery that triggers an increase in HSP levels in response to stress. In contrast, female D. magna actively select habitats that offer optimal conditions for growth and production of offspring. Consequently, females are exposed to variable environmental conditions that may be associated with increased stress. To permit survival in these different habitats, D. magna females require molecular mechanisms to protect their cells from rapid changes in stress levels. Thus, they maintain high constitutive levels of the heat shock proteins from HSP 60, 70, and 90 families, and they have the potential to further enhance the production of the majority of these proteins under stress conditions. The results of this study indicate that the separate habitats selected by male and female D. magna result in different patterns of HSP production, leading us to hypothesize that that male and female Daphnia magna adopt different strategies to maximize the fitness of the species
HSP60 as a Target of Anti-Ergotypic Regulatory T Cells
The 60 kDa heat shock protein (HSP60) has been reported to influence T-cell responses in two ways: as a ligand of toll-like receptor 2 signalling and as an antigen. Here we describe a new mechanism of T-cell immuno-regulation focused on HSP60: HSP60 is up-regulated and presented by activated T cells (HSP60 is an ergotope) to regulatory (anti-ergotypic) T cells. Presentation of HSP60 by activated T cells was found to be MHC-restricted and dependent on accessory molecules - CD28, CD80 and CD86. Anti-ergotypic T cells responded to T-cell HSP60 by proliferation and secreted IFNγ and TGFβ1. In vitro, the anti-ergotypic T cells inhibited IFNγ production by their activated T-cell targets. In vivo, adoptive transfer of an anti-ergotypic HSP60-specific T-cell line led to decreased secretion of IFNγ by arthritogenic T cells and ameliorated adjuvant arthritis (AA). Thus, the presentation of HSP60 by activated T cells turns them into targets for anti-ergotypic regulatory T cells specific for HSP60. However, the direct interaction between the anti-ergotypic T regulators (anti-HSP60) and the activated T cells also down-regulated the regulators. Thus, by functioning as an ergotope, HSP60 can control both the effector T cells and the regulatory HSP60-specific T cells that control them
A Mycobacterium leprae Hsp65 Mutant as a Candidate for Mitigating Lupus Aggravation in Mice
Hsp60 is an abundant and highly conserved family of intracellular molecules. Increased levels of this family of proteins have been observed in the extracellular compartment in chronic inflammation. Administration of M. leprae Hsp65 [WT] in [NZBxNZW]F1 mice accelerates the Systemic Lupus Erythematosus [SLE] progression whereas the point mutated K409A Hsp65 protein delays the disease. Here, the biological effects of M. leprae Hsp65 Leader pep and K409A pep synthetic peptides, which cover residues 352–371, are presented. Peptides had immunomodulatory effects similar to that observed with their respective proteins on survival and the combined administration of K409A+Leader pep or K409A pep+WT showed that the mutant forms were able to inhibit the deleterious effect of WT on mortality, indicating the neutralizing potential of the mutant molecules in SLE progression. Molecular modeling showed that replacing Lysine by Alanine affects the electrostatic potential of the 352–371 region. The number of interactions observed for WT is much higher than for Hsp65 K409A and mouse Hsp60. The immunomodulatory effects of the point-mutated protein and peptide occurred regardless of the catalytic activity. These findings may be related to the lack of effect on survival when F1 mice were inoculated with Hsp60 or K409A pep. Our findings indicate the use of point-mutated Hsp65 molecules, such as the K409A protein and its corresponding peptide, that may minimize or delay the onset of SLE, representing a new approach to the treatment of autoimmune diseases
Inhibition of Effector Function but Not T Cell Activation and Increase in FoxP3 Expression in T Cells Differentiated in the Presence of PP14
Background: T-helper polarization of naïve T cells is determined by a complex mechanism that involves many factors, eventually leading to activation of Th1, Th2, or Th17 responses or alternatively the generation of regulatory T cells. Placental Protein 14 (PP14) is a 28 kDa glycoprotein highly secreted in early pregnancy that is able to desensitize T cell receptor (TCR) signaling and modulate T cell activation. Methodology/Principal Findings: Prolonged antigen-specific stimulation of T cells in the presence of PP14 resulted in an impaired secretion of IFN-c, IL-5 and IL-17 upon restimulation, although the cells proliferated and expressed activation markers. Furthermore, the generation of regulatory CD4 + CD25 high Foxp3 + T cells was induced in the presence of PP14, in both antigen-specific as well as polyclonal stimulation. In accordance with previous reports, we found that the induction of FoxP3 expression by PP14 is accompanied by down regulation of the PI3K-mTOR signaling pathway. Conclusions/Significance: These data suggest that PP14 arrests T cells in a unique activated state that is not accompanied with the acquisition of effector function, together with promoting the generation of regulatory T cells. Taken together, our results may elucidate the role of PP14 in supporting immune tolerance in pregnancy by reducing T cell effector function
In Situ Prior Proliferation of CD4+ CCR6+ Regulatory T Cells Facilitated by TGF-β Secreting DCs Is Crucial for Their Enrichment and Suppression in Tumor Immunity
BACKGROUND: CD4(+)CD25(+) regulatory T cells (Tregs), a heterogeneous population, were enrichment in tumor mass and played an important role in modulating anti-tumor immunity. Recently, we reported a Treg subset, CCR6(+) Tregs but not CCR6(-)Tregs, were enriched in tumor mass and closely related to poor prognosis of breast cancer patients. However, the underlying mechanism remains elusive. Here, we carefully evaluate the enrichment of CCR6(+)Tregs in tumor mass during progression of breast cancer and explore its possible mechanism. METHODOLOGY/PRINCIPAL FINDINGS: The frequency of CCR6(+)Tregs in tumor infiltrating lymphocytes (TILs ) was analyzed at early stage and at late stage of tumor in a murine breast cancer model by FACS respectively. The expansion of CCR6(+)Tregs and their CCR6(-) counterpart in tumor mass were determined by BrdU incorporation assay. The effect and its possible mechanism of tumor-resident antigen presenting cells (APCs) on the proliferation of CCR6(+)Tregs also were evaluated. The role of local expansion of CCR6(+)Tregs in their enrichment and suppression in vivo also was evaluated in adoptive cell transfer assay. We found that the prior enrichment of CCR6(+)Tregs but not CCR6(-)Tregs in tumor mass during progression of murine breast cancer, which was dependent on the dominant proliferation of CCR6(+) Tregs in situ. Further study demonstrated that tumor-resident DCs triggered the proliferation of CCR6(+)Treg cells in TGF-β dependent manner. Adoptive transfer of CCR6(+)Tregs was found to potently inhibit the function of CD8(+)T cells in vivo, which was dependent on their proliferation and subsequently enrichment in tumor mass. CONCLUSIONS/SIGNIFICANCE: Our finding suggested that CCR6(+) Tregs, a distinct subset of Tregs, exert its predominant suppressive role in tumor immunity through prior in situ expansion, which might ultimately provide helpful thoughts for the designing of Treg-based immunotherapy for tumor in the future
Matrix metalloproteinases (MMP-2,9) and their tissue inhibitors (TIMP-1,2) as novel markers of stress response and atherogenesis in children with chronic kidney disease (CKD) on conservative treatment
The system of matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) may play a key role in atherogenesis of chronic kidney disease (CKD) patients by its impact on matrix accumulation. Connections with inflammation, stress, or endothelial dysfunction are also probable. However, the data on correlations between these parameters in CKD patients are scarce in adults and absent in children. The aim of our study was to evaluate serum concentrations of MMP-2, MMP-9, TIMP-1, and TIMP-2, as well as their correlations with markers of stress response (Hsp90-α, anti-Hsp60), endothelial dysfunction (sE-selectin), and inflammation (high-sensitivity C-reactive protein) in CKD children treated conservatively. Thirty-seven patients were divided into two groups according to the CKD stage (gr.CKDI, 19 children with CKD stages 2–3; gr.CKDII, 18 subjects with CKD stages 4–5). Twenty-four age-matched healthy subjects served as controls. Serum concentrations of MMP-2, MMP-9, TIMP-1, TIMP-2, Hsp90-α, anti-Hsp60, and sE-selectin were assessed by ELISA. Median values of MMP-2, MMP-9, TIMP-1, and TIMP-2 were significantly higher in all CKD children vs. controls and were increased in patients with CKD stages 4–5 vs. CKD stages 2–3. Hsp90-α, anti-Hsp60, sE-selectin, and glomerular filtration rate predicted the values of MMPs and TIMPs. Chronic kidney disease in children is characterized by MMP/TIMP system dysfunction, aggravated by the progression of renal failure. Correlations between examined parameters, heat shock proteins, and markers of endothelial damage suggest the possibility of MMP/TIMP application as indicators of stress response and atherogenesis in children with CKD on conservative treatment
- …