13 research outputs found

    Quantum dynamics in strong fluctuating fields

    Full text link
    A large number of multifaceted quantum transport processes in molecular systems and physical nanosystems can be treated in terms of quantum relaxation processes which couple to one or several fluctuating environments. A thermal equilibrium environment can conveniently be modelled by a thermal bath of harmonic oscillators. An archetype situation provides a two-state dissipative quantum dynamics, commonly known under the label of a spin-boson dynamics. An interesting and nontrivial physical situation emerges, however, when the quantum dynamics evolves far away from thermal equilibrium. This occurs, for example, when a charge transferring medium possesses nonequilibrium degrees of freedom, or when a strong time-dependent control field is applied externally. Accordingly, certain parameters of underlying quantum subsystem acquire stochastic character. Herein, we review the general theoretical framework which is based on the method of projector operators, yielding the quantum master equations for systems that are exposed to strong external fields. This allows one to investigate on a common basis the influence of nonequilibrium fluctuations and periodic electrical fields on quantum transport processes. Most importantly, such strong fluctuating fields induce a whole variety of nonlinear and nonequilibrium phenomena. A characteristic feature of such dynamics is the absence of thermal (quantum) detailed balance.Comment: review article, Advances in Physics (2005), in pres

    Defining microglial phenotypic diversity and the impact of ageing

    Get PDF
    Microglia are the resident macrophages of the central nervous system (CNS) and, as key immune effector cells, form the first line of defence. Microglial cells also provide support for maintaining neuronal homeostasis and more generally normal brain physiology and cognitive function. It has been speculated that in order to support homeostasis, microglia adapt to a variety of brain microenvironments leading to regional phenotypic heterogeneity. To date this hypothesis lacks convincing empirical evidence, yet is critical to better understand microglial function in health and age-related neurodegenerative disease. In 2010 it was estimated that in the UK approximately 10 million people are over the age of 65, which is expected to double by 2050. Ageing is one of the strongest risk factors for neurodegenerative diseases such as Alzheimer’s and Parkinson‘s disease and growing evidence implicates neuroinflammatory mechansims that may involve microglial dysfunction in disease aetiology. The majority of age-related neurodegenerative diseases develop in a region-specific manner but the reasons are poorly understood. Accordingly, the work described in this thesis sought to determine the extent and nature of regional transcriptional heterogeneity of microglia and how this is affected by ageing. To examine the function and phenotype of these cells a technique for isolating pure microglia from the adult mouse brain was established. Microglia were consistently extracted by density-gradient and immunomagnetic cell separation. In vitro assays showed purified microglia retained key functional properties including phagocytosis, polarisation and production of pro-inflammatory cytokines in response to exogenous stimulation. Thus, freshly isolated microglia are not altered or dysfunctional during the extraction process and are likely to adequately represent the 'real' in vivo state. Genome-wide transcriptional network analysis of young adult mouse microglia from four discrete regions of the brain (cerebellum, cerebral cortex, hippocampus and striatum) uncovered regional heterogeneity in the microglial transcriptome driven particularly by bioenergetic and immunoregulatory functions. Transcriptional profiles of cerebellar and hippocampal microglia suggest a higher immune vigilance and alertness, which was supported by functional differences in the capability of microglia to phagocytose and control replication of bacteria. Region-dependent heterogeneity of microglia was largely consistent throughout the ageing process; however the region-specific phenotypes were more pronounced as age increased indicating region-dependent kinetics of microglial ageing. Collectively, the outcome of this study implies that microglia adapt to region-specific demands of brain tissue under steady-state conditions and are susceptible to ageing. Region was found to have a greater impact on microglial diversity than age. Overall, these findings will generate a substantial advance in our understanding of microglial function in the healthy brain and in age-related neurodegeneration

    Russian Approaches to Classification of Vegetation

    No full text
    corecore