13 research outputs found

    Aging of the mammalian gastrointestinal tract: a complex organ system

    Get PDF
    Gastrointestinal disorders are a major cause of morbidity in the elderly population. The gastrointestinal tract is the most complex organ system; its diverse cells perform a range of functions essential to life, not only secretion, digestion, absorption and excretion, but also, very importantly, defence. The gastrointestinal tract acts not only as a barrier to harmful materials and pathogens but also contains the vast number of beneficial bacterial populations that make up the microbiota. Communication between the cells of the gastrointestinal tract and the central nervous and endocrine systems modifies behaviour; the organisms of the microbiota also contribute to this brain–gut–enteric microbiota axis. Age-related physiological changes in the gut are not only common, but also variable, and likely to be influenced by external factors as well as intrinsic aging of the cells involved. The cellular and molecular changes exhibited by the aging gut cells also vary. Aging intestinal smooth muscle cells exhibit a number of changes in the signalling pathways that regulate contraction. There is some evidence for age-associated degeneration of neurons and glia of the enteric nervous system, although enteric neuronal losses are likely not to be nearly as extensive as previously believed. Aging enteric neurons have been shown to exhibit a senescence-associated phenotype. Epithelial stem cells exhibit increased mitochondrial mutation in aging that affects their progeny in the mucosal epithelium. Changes to the microbiota and intestinal immune system during aging are likely to contribute to wider aging of the organism and are increasingly important areas of analysis. How changes of the different cell types of the gut during aging affect the numerous cellular interactions that are essential for normal gut functions will be important areas for future aging research

    Monitoring DNA Damage and Repair in Peripheral Blood Mononuclear Cells of Lung Cancer Radiotherapy Patients

    Get PDF
    Thoracic radiotherapy (RT) is required for the curative management of inoperable lung cancer, however, treatment delivery is limited by normal tissue toxicity. Prior studies suggest that using radiation-induced DNA damage response (DDR) in peripheral blood mononuclear cells (PBMC) has potential to predict RT-associated toxicities. We collected PBMC from 38 patients enrolled on a prospective clinical trial who received definitive fractionated RT for non-small cell lung cancer. DDR was measured by automated counting of nuclear Îł-H2AX foci in immunofluorescence images. Analysis of samples collected before, during and after RT demonstrated the induction of DNA damage in PBMC collected shortly after RT commenced, however, this damage repaired later. Radiation dose to the tumour and lung contributed to the in vivo induction of Îł-H2AX foci. Aliquots of PBMC collected before treatment were also irradiated ex vivo, and Îł-H2AX kinetics were analyzed. A trend for increasing of fraction of irreparable DNA damage in patients with higher toxicity grades was revealed. Slow DNA repair in three patients was associated with a combined dysphagia/cough toxicity and was confirmed by elevated in vivo RT-generated irreparable DNA damage. These results warrant inclusion of an assessment of DDR in PBMC in a panel of predictive biomarkers that would identify patients at a higher risk of toxicity

    Simulation of early DNA damage after the irradiation of a fibroblast cell nucleus using Geant4-DNA

    No full text
    In order to improve the understanding of the mechanisms involved in the generation of early DNA damage, a new calculation chain based on the Geant4-DNA toolkit was developed. This work presents for the first time the simulation of the physical, physicochemical and chemical stages of early radiation damage at the scale of an entire human genome (fibroblast, male) and using Geant4-DNA models. The DnaFabric software was extended to generate and export this nucleus model to a text file with a specific format that can be read by Geant4 user applications. This calculation chain was used to simulate the irradiation of the nucleus by primary protons of different energies (0,5; 0,7; 0,8; 1; 1,5; 2; 3; 4; 5; 10; 20 MeV) and the results, in terms of DNA double strand breaks, agree with experimental data found in the literature (pulsed field electrophoresis technique). These results show that the simulation is consistent and that its parameters are well balanced. Among the different parameters that can be adjusted, our results demonstrate that the criterion used to select direct strand break appears to have a very significant role on the final number of simulated double strand breaks
    corecore