4,439 research outputs found

    An improved technique for isolated perfusion of rat livers and an evaluation of perfusates

    Get PDF
    We have modified the apparatus for isolated rat liver perfusion (IPRL) in order to be able to perform two perfusions simultaneously. In addition, we studied the quality and stability of livers by comparison of five different perfusates: Blood (Group A), Original Krebs Henseleit buffer (Group B), Krebs buffer with glucose (Group C) or bovine serum albumin (BSA) added, (Group D). In a last group (E) albumin, glucose, and taurocholic acid were added to Krebs. After 180 min of perfusion, livers perfused with solutions including 2% albumin (Group D, E) had a significantly higher release of hepatocellular and endothelial cell (purine nucleoside phosphorylase) enzymes and lower bile production as compared to Groups A, B, and C (P < 0.0001). Increasing levels of purine nucleoside phosphorylase (PNP), a reflection of damage to the microvascular endothelium preceded the increases in hepatocellular enzymes. Histologically, damages of sinusoidal endothelial cells and hepatocytes are appreciated moderate to severe in Groups D and E, slight to mild in Groups A and B, and not significant in Group C. These results suggest that BSA may have toxic effects to the perfused rat liver. These data also confirm that the IPRL modified for simultaneous perfusion of two livers is efficient, and that with this technique the rat liver can be optimally perfused for up to 3 hr with oxygenated Krebs Henseleit buffer without additives (Group B) and without blood. These two improvements should allow those performing studies with perfused rat livers to obtain data in a more efficient, accurate, and inexpensive fashion. © 1992

    A Family of Maximum Margin Criterion for Adaptive Learning

    Full text link
    In recent years, pattern analysis plays an important role in data mining and recognition, and many variants have been proposed to handle complicated scenarios. In the literature, it has been quite familiar with high dimensionality of data samples, but either such characteristics or large data have become usual sense in real-world applications. In this work, an improved maximum margin criterion (MMC) method is introduced firstly. With the new definition of MMC, several variants of MMC, including random MMC, layered MMC, 2D^2 MMC, are designed to make adaptive learning applicable. Particularly, the MMC network is developed to learn deep features of images in light of simple deep networks. Experimental results on a diversity of data sets demonstrate the discriminant ability of proposed MMC methods are compenent to be adopted in complicated application scenarios.Comment: 14 page

    Inhibition of free radical generation and improved survival by protection of the hepatic microvascular endothelium by targeted erythrocytes in orthotopic rat liver transplantation

    Get PDF
    The capacity of specifically targeted erythrocytes to inhibit free radical—mediated injury to the endothelial cell after cold preservation, and improve liver function was studied in two experimental models: An isolated perfused rat liver (IPRL) system and syngeneic orthotopic rat liver transplantation. In the IPRL model, livers were preserved in University of Wisconsin solution for 24 h at 4°C. At the end of the preservation period, livers were flushed with lactated Ringer’s (control), immu- noerythrocytes (IES), or blank intact erythrocytes prior to warm reperfusion for 2 h using an assanguinous Krebs-Henseleit buffer. Production of superoxide (O2-) anion during warm reperfusion in the IES-treated liver was reduced by 65% as compared with controls (P<0.001) and by 74% (P<0.001) when compared with blank erythrocyte—treated livers. Endothelial cell preservation, as assessed by levels of purine nucleoside phos- phorylase (PNP), was much better in the IES-treated group (P<0.001) when compared with untreated livers. Hepatocellular preservation was markedly improved in the IES-treated livers. In the syngeneic liver transplantation model, livers were preserved in UW solution for 24 h at 4°C. Prior to implantation, livers were flushed with 5 ml of cold lactated Ringer’s or immunoerythrocytes. Survival after three weeks was 60% in the IES-treated group and 30% in the untreated group. Survival in the IES-treated group was not significantly different from a control (no preservation) group. IES-treated livers in both models demonstrated better endothelial cell integrity and ultimate liver function. IES treatment therefore appears to protect the hepatic microvascular endothelial cell from reperfusion injury and could prove to be an easy reproducible method of donor organ preparation after cold preservation. © 1990 by Williams & Wilkins

    The Minimal Solution to the mu/B_mu Problem in Gauge Mediation

    Get PDF
    We provide a minimal solution to the mu/B_mu problem in the gauge mediated supersymmetry breaking by introducing a Standard Model singlet filed S with a mass around the messenger scale which couples to the Higgs and messenger fields. This singlet is nearly supersymmetric and acquires a relatively small Vacuum Expectation Value (VEV) from its radiatively generated tadpole term. Consequently, both mu and B_mu parameters receive the tree-level and one-loop contributions, which are comparable due to the small S VEV. Because there exists a proper cancellation in such two kinds of contributions to B_mu, we can have a viable Higgs sector for electroweak symmetry breaking.Comment: 15 pages, 2 figures, version published on JHE

    Review of analytical methods and reporting of the polyphenol content of tart cherry supplements in human supplementation studies investigating health and exercise performance effects: recommendations for good practice

    Get PDF
    This is the final version. Available on open access from Frontiers Media via the DOI in this record. Tart cherries (TC) are a rich source of polyphenols that elicit antioxidant and anti-inflammatory effects. As a consequence, the effects of TC derived supplements on markers of human health, exercise performance and sleep have been investigated. Supplementation protocols have been highly variable across studies and the dose of bioactive compounds used has often been poorly characterized. Specific and non-specific analytical methods were employed for measuring the total polyphenol and anthocyanin content in TC supplements. This review critically analyses the supplementation protocols and the analytical methods used for the characterization of TC supplements, culminating in recommendations for good practice in the analysis and reporting of the polyphenol content and profile of TC products. A literature search was conducted using PubMed/Medline and Web of Science up to May 4th, 2020, including studies published in all years prior. Only articles written in English that provided a TC dietary supplement as opposed to fresh whole TC were included in this review. Forty-three studies were identified as eligible and included for analysis in this review. The studies investigated the effects of TC supplementation on various aspects of human health, exercise recovery and performance and sleep. Twenty studies conducted an analysis of TC supplement and reported total polyphenol/anthocyanin content. Six studies did not report the polyphenol content of the TC supplement used. Seventeen studies reported the TC supplement polyphenol content but this was derived from previously published studies and presumably different supplement batches. The duration of the supplementation protocol ranged from acute supplementation to 84 days, meanwhile the total polyphenol and anthocyanin dose ranged from 143 to 2,140 mg/day and 15 to 547 mg/day, respectively. Due to the variety of specific and non-specific analytical methods used, the relative efficacy of different doses and polyphenol blends cannot reliably be extrapolated from critical analysis of the literature. Future studies should conduct an analysis of the study supplement batch. In addition to analysis and reporting of total polyphenol content, specific analytical methods such as HPLC UV/MS should be used to quantify total and individual anthocyanin contents

    Three-dimensional jamming and flows of soft glassy materials

    Get PDF
    Various disordered dense systems such as foams, gels, emulsions and colloidal suspensions, exhibit a jamming transition from a liquid state (they flow) to a solid state below a yield stress. Their structure, thoroughly studied with powerful means of 3D characterization, exhibits some analogy with that of glasses which led to call them soft glassy materials. However, despite its importance for geophysical and industrial applications, their rheological behavior, and its microscopic origin, is still poorly known, in particular because of its nonlinear nature. Here we show from two original experiments that a simple 3D continuum description of the behaviour of soft glassy materials can be built. We first show that when a flow is imposed in some direction there is no yield resistance to a secondary flow: these systems are always unjammed simultaneously in all directions of space. The 3D jamming criterion appears to be the plasticity criterion encountered in most solids. We also find that they behave as simple liquids in the direction orthogonal to that of the main flow; their viscosity is inversely proportional to the main flow shear rate, as a signature of shear-induced structural relaxation, in close similarity with the structural relaxations driven by temperature and density in other glassy systems.Comment: http://www.nature.com/nmat/journal/v9/n2/abs/nmat2615.htm

    Computational efficiency improvement for analyzing bending and tensile behavior of woven fabric using strain smoothing method

    Get PDF
    The tensile and bending behavior of woven fabrics are among the most important characteristics in complex deformation analysis and modelling of textile fabrics and they govern many aesthetics and performance aspects such as wrinkle/buckle, hand and drape. In this paper, a numerical method for analyzing of the tensile and bending behavior of plain-woven fabric structure was developed. The formulated model is based on the first-order shear deformation theory (FSDT) for a four-node quadrilateral element (Q4) and a strain smoothing method in finite elements, referred as a cell-based smoothed finite element method (CS-FEM). The physical and low-stress mechanical parameters of the fabric were obtained through the fabric objective measurement technology (FOM) using the Kawabata evaluation system for fabrics (KES-FB). The results show that the applied numerical method provides higher efficiency in computation in terms of central processing unit (CPU) time than the conventional finite element method (FEM) because the evaluation of compatible strain fields of Q4 element in CS-FEM model is constants, and it was also appropriated for numerical modelling and simulation of mechanical deformation behavior such as tensile and bending of woven fabric.The author (UMINHO/BPD/9/2017) and co-authors acknowledge the FCT funding from FCT – Foundation for Science and Technology within the scope of the project “PEST UID/CTM/00264; POCI-01-0145-FEDER-007136”

    Management of traumatic brain injury (TBI): a clinical neuroscience-led pathway for the NHS.

    Get PDF
    Following hyperacute management after traumatic brain injury (TBI), most patients receive treatment which is inadequate or inappropriate, and delayed. This results in suboptimal rehabilitation outcome and avoidable detrimental chronic effects on patients' recovery. This worsens long-term disability, and magnifies costs to the individual and society. We believe that accurate diagnosis (at the level of pathology, impairment and function) of the causes of disability is a prerequisite for appropriate care and for accessing effective rehabilitation. An expert-led, integrated care pathway is needed to deliver accurate and timely diagnosis and optimal treatment at all stages during a TBI patient's care.We propose the introduction of a specialist interdisciplinary traumatic brain injury team, led by a neurosciences-trained brain injury consultant. This team would engage acutely and for a longer term after TBI to provide accurate diagnoses, which guides subsequent management and rehabilitation. This approach would also encourage more efficient collaboration between research and the clinic. We propose that the current major trauma network is leveraged to introduce and evaluate this proposal. Improvements to patient outcomes through this approach would lead to reduced personal, societal and economic impact of TBI

    Multiple Imputation Ensembles (MIE) for dealing with missing data

    Get PDF
    Missing data is a significant issue in many real-world datasets, yet there are no robust methods for dealing with it appropriately. In this paper, we propose a robust approach to dealing with missing data in classification problems: Multiple Imputation Ensembles (MIE). Our method integrates two approaches: multiple imputation and ensemble methods and compares two types of ensembles: bagging and stacking. We also propose a robust experimental set-up using 20 benchmark datasets from the UCI machine learning repository. For each dataset, we introduce increasing amounts of data Missing Completely at Random. Firstly, we use a number of single/multiple imputation methods to recover the missing values and then ensemble a number of different classifiers built on the imputed data. We assess the quality of the imputation by using dissimilarity measures. We also evaluate the MIE performance by comparing classification accuracy on the complete and imputed data. Furthermore, we use the accuracy of simple imputation as a benchmark for comparison. We find that our proposed approach combining multiple imputation with ensemble techniques outperform others, particularly as missing data increases
    • 

    corecore