13 research outputs found

    The Search for Invariance: Repeated Positive Testing Serves the Goals of Causal Learning

    Get PDF
    Positive testing is characteristic of exploratory behavior, yet it seems to be at odds with the aim of information seeking. After all, repeated demonstrations of one’s current hypothesis often produce the same evidence and fail to distinguish it from potential alternatives. Research on the development of scientific reasoning and adult rule learning have both documented and attempted to explain this behavior. The current chapter reviews this prior work and introduces a novel theoretical account—the Search for Invariance (SI) hypothesis—which suggests that producing multiple positive examples serves the goals of causal learning. This hypothesis draws on the interventionist framework of causal reasoning, which suggests that causal learners are concerned with the invariance of candidate hypotheses. In a probabilistic and interdependent causal world, our primary goal is to determine whether, and in what contexts, our causal hypotheses provide accurate foundations for inference and intervention—not to disconfirm their alternatives. By recognizing the central role of invariance in causal learning, the phenomenon of positive testing may be reinterpreted as a rational information-seeking strategy

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Expression of a noncoding RNA is elevated in Alzheimer's disease and drives rapid feed-forward regulation of β-secretase

    No full text
    Recent transcriptomics efforts have revealed that numerous protein-coding messenger RNAs have natural antisense transcript partners, most of which seem to be noncoding RNAs. Here we identify a conserved noncoding antisense transcript for β-secretase-1 (BACE1), a crucial enzyme in Alzheimer’s disease pathophysiology. The BACE1-antisense transcript (BACE1-AS) regulates BACE1 mRNA and subsequently BACE1 protein expression in vitro and in vivo. It seems that the argument for concordant regulation can only be made in the experiments with the siRNA against BACE1-AS. This convention has been followed throughout the manuscript. Please check carefully.]. Upon exposure to various cell stressors including amyloid-β 1–42 (Aβ 1–42), expression of BACE1-AS becomes elevated, increasing BACE1 mRNA stability and generating additional Aβ 1–42 through a post-transcriptional feed-forward mechanism. BACE1-AS concentrations were elevated in subjects with Alzheimer’s disease as well as in amyloid precursor protein transgenic mice. These data show that BACE1 mRNA expression is under the control of a regulatory noncoding RNA that may drive Alzheimer’s disease–associated pathophysiology. In summary, we report that a long noncoding RNA is directly implicated in the increased abundance of Aβ 1–42 in Alzheimer’s disease

    Ionic Channel Function in Action Potential Generation: Current Perspective

    No full text
    corecore