5 research outputs found

    Expression of VEGF and semaphorin genes define subgroups of triple negative breast cancer.

    Get PDF
    PMC3648524Triple negative breast cancers (TNBC) are difficult to treat due to a lack of targets and heterogeneity. Inhibition of angiogenesis is a promising therapeutic strategy, but has had limited effectiveness so far in breast cancer. To quantify heterogeneity in angiogenesis-related gene expression in breast cancer, we focused on two families--VEGFs and semaphorins--that compete for neuropilin co-receptors on endothelial cells. We compiled microarray data for over 2,600 patient tumor samples and analyzed the expression of VEGF- and semaphorin-related ligands and receptors. We used principal component analysis to identify patterns of gene expression, and clustering to group samples according to these patterns. We used available survival data to determine whether these clusters had prognostic as well as therapeutic relevance. TNBC was highly associated with dysregulation of VEGF- and semaphorin-related genes; in particular, it appeared that expression of both VEGF and semaphorin genes were altered in a pro-angiogenesis direction. A pattern of high VEGFA expression with low expression of secreted semaphorins was associated with 60% of triple-negative breast tumors. While all TNBC groups demonstrated poor prognosis, this signature also correlated with lower 5-year survival rates in non-TNBC samples. A second TNBC pattern, including high VEGFC expression, was also identified. These pro-angiogenesis signatures may identify cancers that are more susceptible to VEGF inhibition.JH Libraries Open Access Fun

    Toward precision medicine of breast cancer

    Full text link

    Triple-negative breast cancer: investigating potential molecular therapeutic target

    No full text
    Introduction: Triple-negative breast cancer (TNBC) makes up about 10 - 20% of all breast cancers and the lack of hormone receptors and human epidermal growth factor receptor-2/Neu expression is responsible for poor prognosis, no targeted therapies and trouble in the clinical management. Tumor heterogeneity, also within the same tumor, is a major cause for this difficulty. Based on the introduction of new biological drugs against different kinds of tumor, many efforts have been made for classification of genetic alterations present in TNBC, leading to the identification of several oncogenes and tumor suppressor genes involved in breast cancer carcinogenesis. Areas covered: In this review we investigated the molecular alteration present in TNBC which could lead to the creation of new targeted therapies in the future, with the aim to counteract this disease in the most effective way. Expert opinion: In this context some hormone receptors like G-proteincoupled receptor 30 and androgen receptors may be a fascinating area to investigate; also, angiogenesis, represented not only by the classical VEGF/VEGFR relationship, but also by other molecules, like semaphorins, fibroblast growth factor and heparin-binding-EGF-like, is a mechanism in which new developments are expected. In this perspective, one technique that may show promise is the gene therapy; in particular the gene transfer could correct abnormal genetic function in cancer cells

    Triple-negative breast cancer: investigating potential molecular therapeutic target

    No full text
    corecore