8 research outputs found

    First Dating of a Recombination Event in Mammalian Tick-Borne Flaviviruses

    Get PDF
    The mammalian tick-borne flavivirus group (MTBFG) contains viruses associated with important human and animal diseases such as encephalitis and hemorrhagic fever. In contrast to mosquito-borne flaviviruses where recombination events are frequent, the evolutionary dynamic within the MTBFG was believed to be essentially clonal. This assumption was challenged with the recent report of several homologous recombinations within the Tick-borne encephalitis virus (TBEV). We performed a thorough analysis of publicly available genomes in this group and found no compelling evidence for the previously identified recombinations. However, our results show for the first time that demonstrable recombination (i.e., with large statistical support and strong phylogenetic evidences) has occurred in the MTBFG, more specifically within the Louping ill virus lineage. Putative parents, recombinant strains and breakpoints were further tested for statistical significance using phylogenetic methods. We investigated the time of divergence between the recombinant and parental strains in a Bayesian framework. The recombination was estimated to have occurred during a window of 282 to 76 years before the present. By unravelling the temporal setting of the event, we adduce hypotheses about the ecological conditions that could account for the observed recombination

    Maximum likelihood methods for detecting adaptive evolution after gene duplication

    Full text link
    The rapid accumulation of genomic sequences in public databases will finally allow large scale studies of gene family evolution, including evaluation of the role of positive Darwinian selection following a duplication event. This will be possible because recent statistical methods of comparing synonymous and nonsynonymous substitution rates permit reliable detection of positive selection at individual amino acid sites and along evolutionary lineages. Here, we summarize maximum-likelihood based methods, and present a framework for their application to analysis of gene families. Using these methods, we investigated the role of positive Darwinian selection in the ECP-EDN gene family of primates and the Troponin C gene family of vertebrates. We also comment on the limitations of these methods and discuss directions for further improvements

    High prevalence of GB virus C in Brazil and molecular evidence for intrafamilial transmission

    No full text
    The prevalence of GB virus C (GBV-C) in candidate Brazilian blood donors with normal and elevated alanine aminotransferase levels was found to be 5.2% (5 of 95) and 6.5% (5 of 76), respectively. Among Brazilian patients, GBV-C was Found in 9.5% (13 of 137) of cases of hepatitis not caused by hepatitis A,virus (HAV), HBV, HCV, HDV, or HEV (non-A-E hepatitis) and in 18.2% (8 of 44) of individuals infected with HCV. Molecular characterization of GBV-C by partial sequencing of the NS3 region showed clustering between members of a single family, implying intrafamilial transmission. In conclusion, these results together suggest that contagion mechanisms which facilitate intrafamiliar transmission of GBV-C may partially explain the high prevalence of viremic carriers worldwide.3751634163
    corecore