39 research outputs found

    Correlation between 5-fluorouracil metabolism and treatment response in two variants of C26 murine colon carcinoma

    Get PDF
    Following an i.p. dose of 150 mg x kg(-1) 5-fluorouracil (5-FU), drug uptake and metabolism over a 2-h period were studied by in vivo (19)F magnetic resonance spectroscopy (MRS) for the murine colon carcinoma lines C26-B (5-FU-insensitive; n=11) and C26-10 (5-FU-sensitive; n=15) implanted s.c. in Balb/C mice. Time courses for tumour growth, intracellular levels of FdUMP, thymidylate synthase (TS) activity, and 5-FU in RNA were also determined, and the effects of a 9.5-min period of carbogen breathing, starting 1 min before drug administration, on MRS-detected 5-FU metabolism and tumour growth curves were examined. Both tumour variants generated MRS-detectable 5-FU nucleotides and showed similar initial growth inhibition after treatment. However, the growth rate of C26-B tumours returned to normal, while the sensitive C26-10 tumours, which produced larger fluoronucleotide pools, still showed moderate growth inhibition. Carbogen breathing did not significantly influence 5-FU uptake or fluoronucleotide production but did significantly enhance growth inhibition in C26-10 tumours. While both tumour variants exhibited incorporation of 5-FU into RNA and inhibition of TS via FdUMP, clearance of 5-FU from RNA and recovery of TS activity were greater for the insensitive C26-B line, indicating that these processes, in addition to 5-FU uptake and metabolism, may be important determinants of drug sensitivity and treatment respons

    Pre-clinical imaging of transgenic mouse models of neuroblastoma using a dedicated 3-element solenoid coil on a clinical 3T platform.

    Get PDF
    Background The use of clinical MRI scanners to conduct pre-clinical research facilitates comparisons with clinical studies. Here the utility and sensitivity of anatomical and functional MRI data/biomarkers acquired from transgenic mouse models of neuroblastoma using a dedicated radiofrequency (RF) coil on a clinical 3T scanner was evaluated.Methods Multiparametric MRI of transgenic mice bearing abdominal neuroblastomas was performed at 3T, and data cross-referenced to that acquired from the same mice on a pre-clinical 7T MRI system. T2-weighted imaging, quantitation of the native longitudinal relaxation time (T1) and the transverse relaxation rate (R2*), and dynamic contrast-enhanced (DCE)-MRI, was used to assess tumour volume, phenotype and response to cyclophosphamide or cabozantinib.Results Excellent T2-weighted image contrast enabled clear tumour delineation at 3T. Significant correlations of tumour volume (R=0.98, P2* (R=0.87, P2* (Ptrans for each tumour (median Ktrans values of 0.202, 0.168 and 0.114 min-1). Cyclophosphamide elicited a significant reduction in both tumour burden (P1 (P<0.01), whereas cabozantinib induced significant (P<0.01) tumour growth delay.Conclusions Simultaneous multiparametric MRI of multiple tumour-bearing animals using this coil arrangement at 3T can provide high efficiency/throughput for both phenotypic characterisation and evaluation of novel therapeutics, and facilitate the introduction of functional MRI biomarkers into aligned imaging-embedded clinical trials

    Can localised 19F magnetic resonance spectroscopy pharmacokinetics of 5FU in colorectal metastases predict clinical response?

    Get PDF
    Background 5-Fluorouracil remains widely used in colorectal cancer treatment more than 40 years after its development. 19F magnetic resonance spectroscopy can be used in vivo to measure 5FU’s half-life and metabolism to cytotoxic fluoronucleotides. Previous studies have shown better survival associated with longer 5FU tumour half-life. This work investigated 5FU pharmacokinetics in liver metastases of colorectal cancer. Methods A total of 32 subjects with colorectal cancer undergoing 5FU treatment, 15 of whom had liver metastases, were examined in a 1.5T MRI scanner, using a large coil positioned over the liver. Non-localised spectra were acquired in 1-min blocks for 32 min after injection of a 5FU bolus. The 5FU half-life was measured in each subject, and averaged spectra were examined for the presence of fluoronucleotides. Associations with progression-free survival were assessed. Results No association was observed between 5FU halflife, tumour burden and survival. Half-lives were all shorter than those associated with improved survival in the literature. Remarkably, in the group with liver metastases, high levels of fluoronucleotides were associated with poorer survival; this counterintuitive result may be due to the higher levels of fluoronucleotides (whose level is higher in tumour tissue than in normal liver) in patients with higher tumour burdens. Conclusions It is recommended that future studies use chemical shift imaging at higher field strengths to better resolve tumour from normal liver. Non-localised spectroscopy retains prognostic potential by enabling straightforward detection of fluoronucleotides, which are present at very low concentrations distributed throughout the tissue

    Adaptation to HIF-1 deficiency by upregulation of the AMP/ATP ratio and phosphofructokinase activation in hepatomas

    Get PDF
    Background HIF-1 deficiency has marked effects on tumour glycolysis and growth. We therefore investigated the consequences of HIF-1 deficiency in mice, using the well established Hepa-1 wild-type (WT) and HIF-1β-deficient (c4) model. These mechanisms could be clinically relevant, since HIF-1 is now a therapeutic target. Methods Hepa-1 WT and c4 tumours grown in vivo were analysed by 18FDG-PET and 19FDG Magnetic Resonance Spectroscopy for glucose uptake; by HPLC for adenine nucleotides; by immunohistochemistry for GLUTs; by immunoblotting and by DIGE followed by tandem mass spectrometry for protein expression; and by classical enzymatic methods for enzyme activity. Results HIF-1β deficient Hepa-1 c4 tumours grew significantly more slowly than WT tumours, and (as expected) showed significantly lower expression of many glycolytic enzymes. However, HIF-1β deficiency caused no significant change in the rate of glucose uptake in c4 tumours compared to WT when assessed in vivo by measuring fluoro-deoxyglucose (FDG) uptake. Immunohistochemistry demonstrated less GLUT-1 in c4 tumours, whereas GLUT-2 (liver type) was similar to WT. Factors that might upregulate glucose uptake independently of HIF-1 (phospho-Akt, c-Myc) were shown to have either lower or similar expression in c4 compared to WT tumours. However the AMP/ATP ratio was 4.5 fold higher (p < 0.01) in c4 tumours, and phosphofructokinase-1 (PFK-1) activity, measured at prevailing cellular ATP and AMP concentrations, was up to two-fold higher in homogenates of the deficient c4 cells and tumours compared to WT (p < 0.001), suggesting that allosteric PFK activation could explain their normal level of glycolysis. Phospho AMP-Kinase was also higher in the c4 tumours. Conclusions Despite their defective HIF-1 and consequent down-regulation of glycolytic enzyme expression, Hepa-1 c4 tumours maintain glucose uptake and glycolysis because the resulting low [ATP] high [AMP] allosterically activate PFK-1. This mechanism of resistance would keep glycolysis functioning and also result in activation of AMP-Kinase and growth inhibition; it may have major implications for the therapeutic activity of HIF inhibitors in vivo. Interestingly, this control mechanism does not involve transcriptional control or proteomics, but rather the classical activation and inhibition mechanisms of glycolytic enzymes
    corecore