6 research outputs found

    Disruption of Higher Order DNA Structures in Friedreich's Ataxia (GAA)n Repeats by PNA or LNA Targeting

    Get PDF
    Expansion of (GAA)n repeats in the first intron of the Frataxin gene is associated with reduced mRNA and protein levels and the development of Friedreich’s ataxia. (GAA)n expansions form non-canonical structures, including intramolecular triplex (H-DNA), and R-loops and are associated with epigenetic modifications. With the aim of interfering with higher order H-DNA (like) DNA structures within pathological (GAA)n expansions, we examined sequence-specific interaction of peptide nucleic acid (PNA) with (GAA)n repeats of different lengths (short: n=9, medium: n=75 or long: n=115) by chemical probing of triple helical and single stranded regions. We found that a triplex structure (H-DNA) forms at GAA repeats of different lengths; however, single stranded regions were not detected within the medium size pathological repeat, suggesting the presence of a more complex structure. Furthermore, (GAA)4-PNA binding of the repeat abolished all detectable triplex DNA structures, whereas (CTT)5-PNA did not. We present evidence that (GAA)4-PNA can invade the DNA at the repeat region by binding the DNA CTT strand, thereby preventing non-canonical-DNA formation, and that triplex invasion complexes by (CTT)5-PNA form at the GAA repeats. Locked nucleic acid (LNA) oligonucleotides also inhibited triplex formation at GAA repeat expansions, and atomic force microscopy analysis showed significant relaxation of plasmid morphology in the presence of GAA-LNA. Thus, by inhibiting disease related higher order DNA structures in the Frataxin gene, such PNA and LNA oligomers may have potential for discovery of drugs aiming at recovering Frataxin expression

    Gene editing and RNAi approaches for COVID-19 diagnostics and therapeutics

    No full text
    The novel coronavirus pneumonia (COVID-19) is a highly infectious acute respiratory disease caused by Severe Acute Respiratory Syndrome-Related Coronavirus (SARS-CoV-2) (Prec Clin Med 2020;3:9–13, Lancet 2020;395:497–506, N. Engl J Med 2020a;382:1199–207, Nature 2020;579:270–3). SARS-CoV-2 surveillance is essential to controlling widespread transmission. However, there are several challenges associated with the diagnostic of the COVID-19 during the current outbreak (Liu and Li (2019), Nature 2020;579:265–9, N. Engl J Med 2020;382:727–33). Firstly, the high number of cases overwhelms diagnostic test capacity and proposes the need for a rapid solution for sample processing (Science 2018;360:444–8). Secondly, SARS-CoV-2 is closely related to other important coronavirus species and subspecies, so detection assays can give false-positive results if they are not efficiently specific to SARS-CoV-2. Thirdly, patients with suspected SARS-CoV-2 infection sometimes have a different respiratory viral infection or co-infections with SARS-CoV-2 and other respiratory viruses (MedRxiv 2020a;1–18). Confirmation of the COVID-19 is performed mainly by virus isolation followed by RT-PCR and sequencing (N. Engl J Med 2020;382:727–33, MedRxiv 2020a, Turkish J Biol 2020;44:192–202). The emergence and outbreak of the novel coronavirus highlighted the urgent need for new therapeutic technologies that are fast, precise, stable, easy to manufacture, and target-specific for surveillance and treatment. Molecular biology tools that include gene-editing approaches such as CRISPR-Cas12/13-based SHERLOCK, DETECTR, CARVER and PAC-MAN, antisense oligonucleotides, antisense peptide nucleic acids, ribozymes, aptamers, and RNAi silencing approaches produced with cutting-edge scientific advances compared to conventional diagnostic or treatment methods could be vital in COVID-19 and other future outbreaks. Thus, in this review, we will discuss potent the molecular biology approaches that can revolutionize diagnostic of viral infections and therapies to fight COVID-19 in a highly specific, stable, and efficient way

    mRNA and snRNA Cap Analogs: Synthesis and Applications

    No full text
    corecore