27 research outputs found

    Population growth of Mexican free-tailed bats (Tadarida brasiliensis mexicana) predates human agricultural activity

    Get PDF
    Background Human activities, such as agriculture, hunting, and habitat modification, exert a significant effect on native species. Although many species have suffered population declines, increased population fragmentation, or even extinction in connection with these human impacts, others seem to have benefitted from human modification of their habitat. Here we examine whether population growth in an insectivorous bat (Tadarida brasiliensis mexicana) can be attributed to the widespread expansion of agriculture in North America following European settlement. Colonies of T. b. mexicana are extremely large (~106 individuals) and, in the modern era, major agricultural insect pests form an important component of their food resource. It is thus hypothesized that the growth of these insectivorous bat populations was coupled to the expansion of agricultural land use in North America over the last few centuries. Results We sequenced one haploid and one autosomal locus to determine the rate and time of onset of population growth in T. b. mexicana. Using an approximate Maximum Likelihood method, we have determined that T. b. mexicana populations began to grow ~220 kya from a relatively small ancestral effective population size before reaching the large effective population size observed today. Conclusions Our analyses reject the hypothesis that T. b. mexicana populations grew in connection with the expansion of human agriculture in North America, and instead suggest that this growth commenced long before the arrival of humans. As T. brasiliensis is a subtropical species, we hypothesize that the observed signals of population growth may instead reflect range expansions of ancestral bat populations from southern glacial refugia during the tail end of the Pleistocene

    Forecasting capelin Mallotus villosus biomass on the Newfoundland shelf

    Full text link

    Inter-colony foraging dynamics and breeding success relate to prey availability in a pursuit-diving seabird

    Full text link
    Spatial patterns of breeding seabirds are influenced by the distribution of resources in relation to the colony and the density of conspecifics from the same or adjacent colonies. We conducted an inter-colony comparison of foraging space use and behavior, diet, and reproductive success of common murresUria aalgebreeding at a large offshore and a small inshore colony on the northeastern coast of Newfoundland (Canada) during 2016-2018 under varying prey (capelinMallotus villosus) biomass. Murres from the large offshore colony foraged over a greater area, with greater individual foraging distances, indicative of higher commuting costs compared to the smaller inshore colony. Although this pattern might reflect prey depletion near the offshore colony due to higher conspecific densities, it likely also reflects the greater distance to predictable, high-abundance prey aggregations. This is supported by high spatial overlap of foraging areas from both colonies near coastal, annually persistent capelin spawning sites. Adult diet was similar between colonies during incubation, but diverged during chick-rearing, with offshore murres consuming a higher proportion of alternative prey, while inshore murres consumed more capelin. These differences did not affect fledging success, although hatching success was lower in the larger colony, suggesting that divergent factors (e.g. predation, nest attendance) influence colony-specific population dynamics. Overall, our findings suggest that abundant local prey is key in shaping spatial patterns of breeding common murres in northeastern Newfoundland and results in apparently minimal intraspecific competition. As anthropogenic pressures on resource availability heighten, insight into factors influencing intraspecific foraging niche dynamics will be critical to inform management.</jats:p

    Forecasting capelin Mallotus villosus biomass on the Newfoundland shelf

    No full text

    Modelling the effects of prey size and distribution on prey capture rates of two sympatric marine predators

    Get PDF
    Understanding how prey capture rates are influenced by feeding ecology and environmental conditions is fundamental to assessing anthropogenic impacts on marine higher predators. We compared how prey capture rates varied in relation to prey size, prey patch distribution and prey density for two species of alcid, common guillemot (Uria aalge) and razorbill (Alca torda) during the chick-rearing period. We developed a Monte Carlo approach parameterised with foraging behaviour from birdborne data loggers, observations of prey fed to chicks, and adult diet from wateroffloading, to construct a bio-energetics model. Our primary goal was to estimate prey capture rates, and a secondary aim was to test responses to a set of biologically plausible environmental scenarios. Estimated prey capture rates were 1.5±0.8 items per dive (0.8±0.4 and 1.1±0.6 items per minute foraging and underwater, respectively) for guillemots and 3.7±2.4 items per dive (4.9±3.1 and 7.3±4.0 items per minute foraging and underwater, respectively) for razorbills. Based on species' ecology, diet and flight costs, we predicted that razorbills would be more sensitive to decreases in 0- group sandeel (Ammodytes marinus) length (prediction 1), but guillemots would be more sensitive to prey patches that were more widely spaced (prediction 2), and lower in prey density (prediction 3). Estimated prey capture rates increased non-linearly as 0- group sandeel length declined, with the slope being steeper in razorbills, supporting prediction 1. When prey patches were more dispersed, estimated daily energy expenditure increased by a factor of 3.0 for guillemots and 2.3 for razorbills, suggesting guillemots were more sensitive to patchier prey, supporting prediction 2. However, both species responded similarly to reduced prey density (guillemot expenditure increased by 1.7; razorbill by 1.6), thus not supporting prediction 3. This bio-energetics approach complements other foraging models in predicting likely impacts of environmental change on marine higher predators dependent on species-specific foraging ecologies
    corecore