49 research outputs found

    Conscious uncoupling between FANCI and FANCD2 in DNA repair

    Get PDF
    The Fanconi anemia (FA)-BRCA pathway mediates repair of DNA interstrand crosslinks. The FA core complex, a multi-subunit ubiquitin ligase, participates in the detection of DNA lesions and monoubiquitinates two downstream FA proteins, FANCD2 and FANCI (or the ID complex). However, the regulation of the FA core complex itself is poorly understood. Here we show that the FA core complex proteins are recruited to sites of DNA damage and form nuclear foci in S and G2 phases of the cell cycle. ATR kinase activity, an intact FA core complex and FANCM-FAAP24 were crucial for this recruitment. Surprisingly, FANCI, but not its partner FANCD2, was needed for efficient FA core complex foci formation. Monoubiquitination or ATR-dependent phosphorylation of FANCI were not required for the FA core complex recruitment, but FANCI deubiquitination by USP1 was. Additionally, BRCA1 was required for efficient FA core complex foci formation. These findings indicate that FANCI functions upstream of FA core complex recruitment independently of FANCD2, and alter the current view of the FA-BRCA pathway

    Combined PARP and ATR inhibition potentiates genome instability and cell death in ATM-deficient cancer cells.

    Get PDF
    The poly (ADP-ribose) polymerase (PARP) inhibitor olaparib is FDA approved for the treatment of BRCA-mutated breast, ovarian and pancreatic cancers. Olaparib inhibits PARP1/2 enzymatic activity and traps PARP1 on DNA at single-strand breaks, leading to replication-induced DNA damage that requires BRCA1/2-dependent homologous recombination repair. Moreover, DNA damage response pathways mediated by the ataxia-telangiectasia mutated (ATM) and ataxia-telangiectasia mutated and Rad3-related (ATR) kinases are hypothesised to be important survival pathways in response to PARP-inhibitor treatment. Here, we show that olaparib combines synergistically with the ATR-inhibitor AZD6738 (ceralasertib), in vitro, leading to selective cell death in ATM-deficient cells. We observe that 24 h olaparib treatment causes cells to accumulate in G2-M of the cell cycle, however, co-administration with AZD6738 releases the olaparib-treated cells from G2 arrest. Selectively in ATM-knockout cells, we show that combined olaparib/AZD6738 treatment induces more chromosomal aberrations and achieves this at lower concentrations and earlier treatment time-points than either monotherapy. Furthermore, single-agent olaparib efficacy in vitro requires PARP inhibition throughout multiple rounds of replication. Here, we demonstrate in several ATM-deficient cell lines that the olaparib and AZD6738 combination induces cell death within 1-2 cell divisions, suggesting that combined treatment could circumvent the need for prolonged drug exposure. Finally, we demonstrate in vivo combination activity of olaparib and AZD6738 in xenograft and PDX mouse models with complete ATM loss. Collectively, these data provide a mechanistic understanding of combined PARP and ATR inhibition in ATM-deficient models, and support the clinical development of AZD6738 in combination with olaparib

    The management and outcome for patients with chronic subdural hematoma: A prospective, multicenter, observational cohort study in the United Kingdom

    Get PDF
    OBJECTIVESymptomatic chronic subdural hematoma (CSDH) will become an increasingly common presentation in neurosurgical practice as the population ages, but quality evidence is still lacking to guide the optimal management for these patients. The British Neurosurgical Trainee Research Collaborative (BNTRC) was established by neurosurgical trainees in 2012 to improve research by combining the efforts of trainees in each of the United Kingdom (UK) and Ireland's neurosurgical units (NSUs). The authors present the first study by the BNTRC that describes current management and outcomes for patients with CSDH throughout the UK and Ireland. This provides a resource both for current clinical practice and future clinical research on CSDH.METHODSData on management and outcomes for patients with CSDH referred to UK and Ireland NSUs were collected prospectively over an 8-month period and audited against criteria predefined from the literature: NSU mortality < 5%, NSU morbidity < 10%, symptomatic recurrence within 60 days requiring repeat surgery < 20%, and unfavorable functional status (modified Rankin Scale score of 4–6) at NSU discharge < 30%.RESULTSData from 1205 patients in 26 NSUs were collected. Bur-hole craniostomy was the most common procedure (89%), and symptomatic recurrence requiring repeat surgery within 60 days was observed in 9% of patients. Criteria on mortality (2%), rate of recurrence (9%), and unfavorable functional outcome (22%) were met, but morbidity was greater than expected (14%). Multivariate analysis demonstrated that failure to insert a drain intraoperatively independently predicted recurrence and unfavorable functional outcome (p = 0.011 and p = 0.048, respectively). Increasing patient age (p < 0.00001), postoperative bed rest (p = 0.019), and use of a single bur hole (p = 0.020) independently predicted unfavorable functional outcomes, but prescription of high-flow oxygen or preoperative use of antiplatelet medications did not.CONCLUSIONSThis is the largest prospective CSDH study and helps establish national standards. It has confirmed in a real-world setting the effectiveness of placing a subdural drain. This study identified a number of modifiable prognostic factors but questions the necessity of some common aspects of CSDH management, such as enforced postoperative bed rest. Future studies should seek to establish how practitioners can optimize perioperative care of patients with CSDH to reduce morbidity as well as minimize CSDH recurrence. The BNTRC is unique worldwide, conducting multicenter trainee-led research and audits. This study demonstrates that collaborative research networks are powerful tools to interrogate clinical research questions.Society of British Neurological Surgeons. PJH supported by NIHR Research Professorship and NIHR Cambridge Biomedical Research Centre.This is the author accepted manuscript. It is permanently embargoed to comply with the publisher’s copyright terms. The final version is available via https://doi.org/10.3171/2016.8.JNS1613

    Outcomes following surgery in subgroups of comatose and very elderly patients with chronic subdural hematoma

    Get PDF
    Increasing age and lower pre-operative Glasgow coma score (GCS) are associated with worse outcome after surgery for chronic subdural haematoma (CSDH). Only few studies have quantified outcomes specific to the very elderly or comatose patients. We aim to examine surgical outcomes in these patient groups. We analysed data from a prospective multicentre cohort study, assessing the risk of recurrence, death, and unfavourable functional outcome of very elderly (≥ 90 years) patients and comatose (pre-operative GCS ≤ 8) patients following surgical treatment of CSDH. Seven hundred eighty-five patients were included in the study. Thirty-two (4.1%) patients had pre-operative GCS ≤ 8 and 70 (8.9%) patients were aged ≥ 90 years. A higher proportion of comatose patients had an unfavourable functional outcome (38.7 vs 21.7%; p = 0.03), although similar proportion of comatose (64.5%) and non-comatose patients (61.8%) functionally improved after surgery (p = 0.96). Compared to patients aged < 90 years, a higher proportion of patients aged ≥ 90 years had unfavourable functional outcome (41.2 vs 20.5%; p < 0.01), although approximately half had functional improvement following surgery. Mortality risk was higher in both comatose (6.3 vs 1.9%; p = 0.05) and very elderly (8.8 vs 1.1%; p < 0.01) groups. There was a trend towards a higher recurrence risk in the comatose group (19.4 vs 9.5%; p = 0.07). Surgery can still provide considerable benefit to very elderly and comatose patients despite their higher risk of morbidity and mortality. Further research would be needed to better identify those most likely to benefit from surgery in these groups

    Drug discovery in advanced prostate cancer: translating biology into therapy.

    Get PDF
    Castration-resistant prostate cancer (CRPC) is associated with a poor prognosis and poses considerable therapeutic challenges. Recent genetic and technological advances have provided insights into prostate cancer biology and have enabled the identification of novel drug targets and potent molecularly targeted therapeutics for this disease. In this article, we review recent advances in prostate cancer target identification for drug discovery and discuss their promise and associated challenges. We review the evolving therapeutic landscape of CRPC and discuss issues associated with precision medicine as well as challenges encountered with immunotherapy for this disease. Finally, we envision the future management of CRPC, highlighting the use of circulating biomarkers and modern clinical trial designs

    Rapid PIKK-dependent release of Chk1 from chromatin promotes the DNA-damage checkpoint response

    No full text
    SummaryBackgroundCheckpoint signaling pathways are of crucial importance for the maintenance of genomic integrity. Within these pathways, the effector kinase Chk1 plays a central role in mediating cell-cycle arrest in response to DNA damage, and it does so by phosphorylating key cell-cycle regulators.ResultsBy investigating the subcellular distribution of Chk1 by cell fractionation, we observed that around 20% of it localizes to chromatin during all phases of the cell cycle. Furthermore, we found that in response to DNA damage, Chk1 rapidly dissociates from the chromatin. Significantly, we observed a tight correlation between DNA-damage-induced Chk1 phosphorylation and chromatin dissociation, suggesting that phosphorylated Chk1 does not stably associate with chromatin. Consistent with these events being triggered by active checkpoint signaling, inhibition of the DNA-damage-activated kinases ATR and ATM, or siRNA-mediated downregulation of the DNA-damage mediator proteins Claspin and TopBP1, impaired DNA-damage-induced dissociation of Chk1 from chromatin. Finally, we established that Chk1 phosphorylation occurs at localized sites of DNA damage and that constitutive immobilization of Chk1 on chromatin results in a defective DNA-damage-induced checkpoint arrest.ConclusionsChromatin association and dissociation appears to be important for proper Chk1 regulation. We propose that in response to DNA damage, PIKK-dependent checkpoint signaling leads to phosphorylation of chromatin-bound Chk1, resulting in its rapid release from chromatin and facilitating the transmission of DNA-damage signals to downstream targets, thereby promoting efficient cell-cycle arrest
    corecore