36 research outputs found

    Evaluation of HER-2/neu gene amplification and protein expression in non-small cell lung carcinomas

    Get PDF
    HER-2/neu gene amplification and cell surface overexpression are important factors in breast cancer for prognosis and prediction of sensitivity to anti-HER-2/neu monoclonal antibody therapy. In lung cancer, the clinical significance of HER-2/neu expression is currently under evaluation. We investigated 238 non-small lung carcinomas for HER-2/neu protein overexpression by immunohistochemistry using the HercepTest. We found 2+ or 3+ overexpression in 39 patients (16%), including 35% in adenocarcinomas and 20% in large cell carcinomas, but only 1% of squamous cell carcinomas. Marked (3+) overexpression was uncommon (4%). The association between protein expression and gene copy number per cell, as determined by fluorescence in situ hybridisation assay, was investigated in 51 of these NSCLC tumours. Twenty-seven tumours (53%) were negative by both tests. Marked (3+) protein expression and gene amplification were present in only 4% of samples. In 11 tumours (21%), gene gain was accompanied by chromosomal aneusomy and did not result in high protein levels while in 7 (14%) the score 2+ was associated with maximum number of signals per cell <9. The prognostic implication of HER-2/neu protein expression was studied in 187 surgically resected tumours. No statistical difference in survival was observed comparing patients with positive (2+/3+) and negative tumours (0/1+), although 3+ patients showed a tendency to shorter survival. The therapeutic implications of protein expression and gene amplification in lung cancer need to be examined in prospective clinical trials

    Investigation of three new mouse mammary tumor cell lines as models for transforming growth factor (TGF)-Ī² and Neu pathway signaling studies: identification of a novel model for TGF-Ī²-induced epithelial-to-mesenchymal transition

    Get PDF
    INTRODUCTION: This report describes the isolation and characterization of three new murine mammary epithelial cell lines derived from mammary tumors from MMTV (mouse mammary tumor virus)/activated Neu + TĪ²RII-AS (transforming growth factor [TGF]-Ī² type II receptor antisense RNA) bigenic mice (BRI-JM01 and BRI-JM05 cell lines) and MMTV/activated Neu transgenic mice (BRI-JM04 cell line). METHODS: The BRI-JM01, BRI-JM04, and BRI-JM05 cell lines were analyzed for transgene expression, their general growth characteristics, and their sensitivities to several growth factors from the epidermal growth factor (EGF) and TGF-Ī² families (recombinant human EGF, heregulin-Ī²(1 )and TGF-Ī²(1)). The BRI-JM01 cells were observed to undergo a striking morphologic change in response to TGF-Ī²(1), and they were therefore further investigated for their ability to undergo a TGF-Ī²-induced epithelial-to-mesenchymal transition (EMT) using motility assays and immunofluorescence microscopy. RESULTS: We found that two of the three cell lines (BRI-JM04 and BRI-JM05) express the Neu transgene, whereas, unexpectedly, both of the cell lines that were established from MMTV/activated Neu + TĪ²RII-AS bigenic tumors (BRI-JM01 and BRI-JM05) do not express the TĪ²RII-AS transgene. The cuboidal BRI-JM01 cells exhibit a short doubling time and are able to form confluent monolayers. The BRI-JM04 and BRI-JM05 cell lines are morphologically much less uniform, grow at a much slower rate, and do not form confluent monolayers. Only the BRI-JM05 cells can form colonies in soft agar. In contrast, all three cell lines form colonies in Matrigel, although the BRI-JM04 and BRI-JM05 cell lines do so more efficiently than the BRI-JM01 cell line. All three cell lines express the cell surface marker E-cadherin, confirming their epithelial character. Proliferation assays showed that the three cell lines respond differently to recombinant human EGF and heregulin-Ī²(1), and that all are growth inhibited by TGF-Ī²(1), but that only the BRI-JM01 cell line undergoes an EMT and exhibits increased motility upon TGF-Ī²(1 )treatment. CONCLUSION: We suggest that the BRI-JM04 and BRI-JM05 cell lines can be used to investigate Neu oncogene driven mammary tumorigenesis, whereas the BRI-JM01 cell line will be useful for studying TGF-Ī²(1)-induced EMT

    Trastuzumab emtansine: mechanisms of action and drug resistance

    Get PDF
    Trastuzumab emtansine (T-DM1) is an antibody-drug conjugate that is effective and generally well tolerated when administered as a single agent to treat advanced breast cancer. Efficacy has now been demonstrated in randomized trials as first line, second line, and later than the second line treatment of advanced breast cancer. T-DM1 is currently being evaluated as adjuvant treatment for early breast cancer. It has several mechanisms of action consisting of the anti-tumor effects of trastuzumab and those of DM1, a cytotoxic anti-microtubule agent released within the target cells upon degradation of the human epidermal growth factor receptor-2 (HER2)-T-DM1 complex in lysosomes. The cytotoxic effect of T-DM1 likely varies depending on the intracellular concentration of DM1 accumulated in cancer cells, high intracellular levels resulting in rapid apoptosis, somewhat lower levels in impaired cellular trafficking and mitotic catastrophe, while the lowest levels lead to poor response to T-DM1. Primary resistance of HER2-positive metastatic breast cancer to T-DM1 appears to be relatively infrequent, but most patients treated with T-DM1 develop acquired drug resistance. The mechanisms of resistance are incompletely understood, but mechanisms limiting the binding of trastuzumab to cancer cells may be involved. The cytotoxic effect of T-DM1 may be impaired by inefficient internalization or enhanced recycling of the HER2-T-DM1 complex in cancer cells, or impaired lysosomal degradation of trastuzumab or intracellular trafficking of HER2. The effect of T-DM1 may also be compromised by multidrug resistance proteins that pump DM1 out of cancer cells. In this review we discuss the mechanism of action of T-DM1 and the key clinical results obtained with it, the combinations of T-DM1 with other cytotoxic agents and anti-HER drugs, and the potential resistance mechanisms and the strategies to overcome resistance to T-DM1.BioMed Central open acces

    New antioxidant C-glucosylxanthones from the stems of Arrabidaea samydoides

    No full text
    Three new C-glucosylxanthones, 2-(2'-O-trans-caffeoyl)-C-beta-D-glucopyranosyl-1,3,6,7-tetrahydroxyxanthone (1), 2-(2'-O-trans-cinnamoyl)-C-beta-D-glucopyranosyl-1,3,6,7-tetrahydroxyxanthone (2), and 2-(2'-O-trans-coumaroyl)-C-beta-D-glucopyranosyl-1,3,6,7-tetrahydroxyxanthone (3), were isolated from the stems of Arrabidaea samydoides, in addition to three known C-glucosylxanthones, mangiferin (4), 2-(2'-O-benzoyl)-C-beta-D-glucopyranosyl-1,3,6,7-tetrahydroxyxanthone (5), and muraxanthone (6). Their chemical structures were assigned on the basis of MS and 1D and 2D NMR experiments. Xanthones 1-6 showed moderate free radical scavenging activity against 1,1-diphenyl-2-picrylhydrazyl (DPPH) as well as antioxidant activity evidenced by redox properties measured on ElCD-HPLC.66101384138
    corecore