32 research outputs found

    Temporal progression in migratory status and sexual maturation in European silver eels during downstream migration

    Get PDF
    The onset of downstream migration of European eels is accompanied by a cessation of feeding and the start of sexual maturation which stresses the link between metabolism and sexual maturation, also suggesting an important role for exercise. Exercise has been tested with eels in swim tunnels and was found to stimulate the onset of sexual maturation. In this study, we have investigated the interplay between migration and maturation in the field during the downstream migration of female silver eels. Temporal changes in migratory status and sexual maturation among silver eels of the upstream Rhine River system over 3 months of the migration season (August, September and October) were determined in biometrical parameters, plasma 17β-estradiol and calcium levels, oocyte histology and gonadal fat levels. Furthermore, the ecological relevant parameters age as determined by otolithometry and health aspects indicated by haematocrit, haemoglobin and swim-bladder parasite load were measured. Silver eels were estimated to be 14 years old. A strong temporal progression in migratory stage was shown over the months of downstream migration. Catches probably represented a mix of reproductive migrants and feeding migrants of which the ratio increased over time. Furthermore, this study confirmed our hypothesis linking the migratory stage to early maturation as indicated by enlargement of the eyes, oocyte growth and fat deposition in the oocytes, exactly the same changes as found induced by exercise but not ruling out environmental influences. Migrants show extensive fat uptake by the oocytes, probably stimulated by the swimming exercise. In addition, at least 83% of the silver eels in this spawning run may have suffered from negative effects of swim-bladder parasites on their swimming performance

    Evaluating a selective prevention programme for binge drinking among young adolescents: study protocol of a randomized controlled trial

    Get PDF
    Contains fulltext : 99319.pdf (publisher's version ) (Open Access)Background In comparison to other Europe countries, Dutch adolescents are at the top in drinking frequency and binge drinking. A total of 75% of the Dutch 12 to 16 year olds who drink alcohol also engage in binge drinking. A prevention programme called Preventure was developed in Canada to prevent adolescents from binge drinking. This article describes a study that aims to assess the effects of this selective school-based prevention programme in the Netherlands. Methods A randomized controlled trial is being conducted among 13 to 15-year-old adolescents in secondary schools. Schools were randomly assigned to the intervention and control conditions. The intervention condition consisted of two 90 minute group sessions, carried out at the participants' schools and provided by a qualified counsellor and a co-facilitator. The intervention targeted young adolescents who demonstrated personality risk for alcohol abuse. The group sessions were adapted to four personality profiles. The control condition received no further intervention above the standard substance use education sessions provided in the Dutch national curriculum. The primary outcomes will be the percentage reduction in binge drinking, weekly drinking and drinking-related problems after three specified time periods. A screening survey collected data by means of an Internet questionnaire. Students have completed, or will complete, a post-treatment survey after 2, 6, and 12 months, also by means of an online questionnaire. Discussion This study protocol presents the design and current implementation of a randomized controlled trial to evaluate the effectiveness of a selective alcohol prevention programme. We expect that a significantly lower number of adolescents will binge drink, drink weekly, and have drinking-related problems in the intervention condition compared to the control condition, as a result of this intervention.9 p

    Swimming physiology of European silver eels (Anguilla anguilla L.): energetic costs and effects on sexual maturation and reproduction

    Get PDF
    The European eel migrates 5,000–6,000 km to the Sargasso Sea to reproduce. Because they venture into the ocean in a pre-pubertal state and reproduce after swimming for months, a strong interaction between swimming and sexual maturation is expected. Many swimming trials have been performed in 22 swim tunnels to elucidate their performance and the impact on maturation. European eels are able to swim long distances at a cost of 10–12 mg fat/km which is 4–6 times more efficient than salmonids. The total energy costs of reproduction correspond to 67% of the fat stores. During long distance swimming, the body composition stays the same showing that energy consumption calculations cannot be based on fat alone but need to be compensated for protein oxidation. The optimal swimming speed is 0.61–0.67 m s−1, which is ~60% higher than the generally assumed cruise speed of 0.4 m s−1 and implies that female eels may reach the Sargasso Sea within 3.5 months instead of the assumed 6 months. Swimming trials showed lipid deposition and oocyte growth, which are the first steps of sexual maturation. To investigate effects of oceanic migration on maturation, we simulated group-wise migration in a large swim-gutter with seawater. These trials showed suppressed gonadotropin expression and vitellogenesis in females, while in contrast continued sexual maturation was observed in silver males. The induction of lipid deposition in the oocytes and the inhibition of vitellogenesis by swimming in females suggest a natural sequence of events quite different from artificial maturation protocols

    Chemotherapy-induced hyaluronan production: a novel chemoresistance mechanism in ovarian cancer

    Get PDF
    Background: Hyaluronan (HA) an important component of the extracellular matrix, has been linked to tumor progression and drug resistance in several malignancies. However, limited data is available for ovarian cancer. This study investigated the role of hyaluronan (HA) and a potential link between the HA-CD44 pathway and membrane ATP binding cassette (ABC) transporter proteins in ovarian cancer chemoresistance. Methods: We investigated the ability of HA to block the cytotoxic effects of the chemotherapy drug carboplatin, and to regulate the expression of ABC transporters in ovarian cancer cells. We also examined HA serum levels in ovarian cancer patients prior to and following chemotherapy and assessed its prognostic relevance. Results: HA increased the survival of carboplatin treated ovarian cancer cells expressing the HA receptor, CD44 (OVCAR-5 and OV-90). Carboplatin significantly increased expression of HAS2, HAS3 and ABCC2 and HA secretion in ovarian cancer cell conditioned media. Serum HA levels were significantly increased in patients following platinum based chemotherapy and at both 1st and 2nd recurrence when compared with HA levels prior to treatment. High serum HA levels (>50 μg/ml) prior to chemotherapy treatment were associated with significantly reduced progression-free (P = 0.014) and overall survival (P = 0.036). HA production in ovarian cancer cells was increased in cancer tissues collected following chemotherapy treatment and at recurrence. Furthermore HA treatment significantly increased the expression of ABC drug transporters (ABCB3, ABCC1, ABCC2, and ABCC3), but only in ovarian cancer cells expressing CD44. The effects of HA and carboplatin on ABC transporter expression in ovarian cancer cells could be abrogated by HA oligomer treatment. Importantly, HA oligomers increased the sensitivity of chemoresistant SKOV3 cells to carboplatin. Conclusions: Our findings indicate that carboplatin chemotherapy induces HA production which can contribute to chemoresistance by regulating ABC transporter expression. The HA-CD44 signaling pathway is therefore a promising target in platinum resistant ovarian cancer.Carmela Ricciardelli, Miranda P Ween, Noor A Lokman, Izza A Tan, Carmen E Pyragius, and Martin K Oehle

    Physiological and genetic basis for variation in migratory behavior in the three-spined stickleback, Gasterosteus aculeatus

    Full text link

    Mutant p53 upregulates alpha-1 antitrypsin expression and promotes invasion in lung cancer.

    Full text link
    Missense mutations in the TP53 tumor-suppressor gene inactivate its antitumorigenic properties and endow the incipient cells with newly acquired oncogenic properties that drive invasion and metastasis. Although the oncogenic effect of mutant p53 transcriptome has been widely acknowledged, the global influence of mutant p53 on cancer cell proteome remains to be fully elucidated. Here, we show that mutant p53 drives the release of invasive extracellular factors (the 'secretome') that facilitates the invasion of lung cancer cell lines. Proteomic characterization of the secretome from mutant p53-inducible H1299 human non-small cell lung cancer cell line discovered that the mutant p53 drives its oncogenic pathways through modulating the gene expression of numerous targets that are subsequently secreted from the cells. Of these genes, alpha-1 antitrypsin (A1AT) was identified as a critical effector of mutant p53 that drives invasion in vitro and in vivo, together with induction of epithelial-mesenchymal transition markers expression. Mutant p53 upregulated A1AT transcriptionally through the involvement with its family member p63. Conditioned medium containing secreted A1AT enhanced cell invasion, while an A1AT-blocking antibody attenuated the mutant p53-driven migration and invasion. Importantly, high A1AT expression correlated with increased tumor stage, elevated p53 staining and shorter overall survival in lung adenocarcinoma patients. Collectively, these findings suggest that A1AT is an indispensable target of mutant p53 with prognostic and therapeutic potential in mutant p53-expressing tumors
    corecore