32 research outputs found

    Does economic development contribute to sex differences in ischaemic heart disease mortality? Hong Kong as a natural experiment using a case-control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The male excess risk of premature ischemic heart disease (IHD) mortality may be partially due to an unknown macro-environmental influence associated with economic development. We examined whether excess male risk of IHD mortality was higher with birth in an economically developed environment.</p> <p>Methods</p> <p>We used multivariable logistic regression in a population-based case-control study of all adult deaths in Hong Kong Chinese in 1998 to compare sex differences in IHD mortality (1,189 deaths in men, 1,035 deaths in women and 20,842 controls) between Hong Kong residents born in economically developed Hong Kong or in contemporaneously undeveloped Guangdong province in China.</p> <p>Results</p> <p>Younger (35–64 years) native-born Hong Kong men had a higher risk of IHD death than such women (odds ratio 2.91, 95% confidence interval 1.66 to 5.13), adjusted for age, socio-economic status and lifestyle. There was no such sex difference in Hong Kong residents who had migrated from Guangdong. There were no sex differences in pneumonia deaths by birth place.</p> <p>Conclusion</p> <p>Most of these people migrated as young adults; we speculate that environmentally mediated differences in pubertal maturation (when the male disadvantage in lipids and fat patterning emerges) may contribute to excess male premature IHD mortality in developed environments.</p

    Lawson criterion for ignition exceeded in an inertial fusion experiment

    Get PDF
    For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion

    Soil thermal behavior in different moisture condition: an overview of ITER project from laboratory to field test monitoring

    No full text
    The thermal properties of soils can be considered one of the most important parameters for many engineering projects designing. In detail, the thermal conductivity plays a fundamental role when dimensioning ground heat exchangers, especially very shallow geothermal (VGS) systems, interesting the first 2 m of depth from the ground level. However, the determination of heat transfer in soils is difficult to estimate, because depends on several factors, including, among others, particle size, density, water content, mineralogy composition, ground temperature, organic matter. The performance of a VSG system, as horizontal collectors or special forms, is strongly correlated to the kind of sediment at disposal and suddenly decreases in case of dry-unsaturated conditions in the surrounding soil. Therefore, a better knowledge of the relationship between thermal conductivity and water content is required for understanding the VSG systems behavior in saturated and unsaturated conditions. Key challenge of ITER Project, funded by European Union, is to understand how to enhance the heat transfer of the sediments surrounding the pipes, taking into account the interactions between the soil, the horizontal heat exchangers and the surrounding environment. In order to obtain reliable data for modelling, an interdisciplinary approach is used. In laboratory the physical-thermal properties of more than 15 soil mixtures, consisting in (i) natural soil, (ii) pure sand and (iii) mixtures of pure sand and clay additives, have been tested under different water content percentages and different consolidation degree. Then the same parameters are monitored in the project case study, in Eltersdorf, (Germany), where five helix collectors are installed in horizontal trenches filled in with five different mixtures already tested in laboratory. In addition, a monitoring system allows to record every 15 minutes, by means of devoted sensors, values related to ground temperature (undisturbed, inside and outside each helix), fluid temperature and flow running in the collectors, volumetric water content at 20 and 60 cm depth. Moreover, a meteorological station provides climatic data acquisition as rainfall, wind speed, relative humidity and air temperature. The main results achieved until now are useful for future modeling because shed new light (i) on the differences between data collected in laboratory and in the field and (ii) on the influence of the technical solution adopted in situ to fill in the trenches, able to create a non-homogeneous distribution of the soil bodies around the helix.Abstract 5th International Conference Novel Methods for Subsurface Characterization and Monitoring: From Theory to Practice, NovCare 2017, Dresden, Germany, 06-09.06.201

    Impacts of lagoon opening and implications for coastal management: case study from Muni-Pomadze lagoon, Ghana

    No full text
    Lagoon-barrier systems are a dynamic coastal environment. When an ephemeral connection between a lagoon and the ocean develops, it has significant impact on hydrology, sedimentology and ecology. Increasingly, human actions and sea level rise also influence lagoons with the potential to increase their connectivity with the ocean. TheMuni-Pomadze lagoon in central Ghana is a small lagoon-barrier system that is intermittently open to the ocean. Following opening in 2014 the lagoon was open to the ocean for more than two years. Causes for the unusually long period of lagoon opening are unclear although human intrevention has played a role. Field observation, digital mapping and GIS analysis of the shoreline during the two year period of lagoon opening has enabled an understanding of how the lagoon-ocean connection has impacted coastal morphology, erosion and sedimentation. Opening has resulted in rapid changes to the location of the barrier breaching (tidal inlet), erosion on the barrier and sedimentation in the lagoon. Such modifications have implications for local resources and ecosystem services that underpin the livelihood and wellbeing of local communities. Elucidating how a connection to the ocean impacts lagoons and the coastal communities they support are important to managing lagoons not only in Ghana but across West Africa.University of Derby Environmental Sustainability Research Centr
    corecore