11 research outputs found
STRAINS OF Paraburkholderia ORIGINATED FROM RUPESTRIAN FIELDS PROMOTE THE GROWTH OF Mimosa foliolosa
Associative diazotrophic bacteria in grass roots and soils from heavy metal contaminated sites
This work aimed to evaluate density of associative diazotrophic bacteria populations in soil and grass root samples from heavy metal contaminated sites, and to characterize isolates from these populations, both, phenotypically (Zinc, Cadmium and NaCl tolerance in vitro, and protein profiles) and genotypically (16S rDNA sequencing), as compared to type strains of known diazotrophic species. Densities were evaluated by using NFb, Fam and JNFb media, commonly used for enrichment cultures of diazotrophic bacteria. Bacterial densities found in soil and grass root samples from contaminated sites were similar to those reported for agricultural soils. Azospirillum spp. isolates from contaminated sites and type strains from non-contaminated sites varied substantially in their in vitro tolerance to Zn+2 and Cd+2, being Cd+2 more toxic than Zn+2. Among the most tolerant isolates (UFLA 1S, 1R, S181, S34 and S22), some (1R, S34 and S22) were more tolerant to heavy metals than rhizobia from tropical and temperate soils. The majority of the isolates tolerant to heavy metals were also tolerant to salt stress as indicated by their ability to grow in solid medium supplemented with 30 g L-1 NaCl. Five isolates exhibited high dissimilarity in protein profiles, and the 16S rDNA sequence analysis of two of them revealed new sequences for Azospirillum.<br>Objetivou-se avaliar a densidade de populações de bactérias diazotróficas associativas em amostras de solos e de raízes de gramíneas oriundas de sítios contaminados com metais pesados, e caracterizar isolados destas populações através da análise fenotípica (tolerância aos metais pesados zinco e cádmio e à NaCl in vitro, perfis protéicos), e genotípica (seqüenciamento de 16S rDNA), comparados às estirpes tipo das mesmas espécies. As densidades foram avaliadas nos meios NFb, Fam e LGI, comumente utilizados para culturas de enriquecimento de populações de bactérias diazotróficas associativas. As densidades encontradas em amostras de solo e raiz de sítios contaminados foram semelhantes àquelas relatadas na literatura para solos agrícolas. Isolados de Azospirillum spp. de solos contaminados e estirpes tipo oriundas de solos não contaminados variaram substancialmente com relação à tolerância a Zn+2 e Cd+2, sendo que Cd+2 mais tóxico que Zn+2. Dentre os isolados mais tolerantes (UFLA 1S, 1R, S181, S34, e S22), alguns(1R, S34 e S22) foram mais tolerantes a metais pesados que rizóbios isolados de solos de áreas tropicais e temperadas. A maioria dos isolados mais tolerantes a metais pesados também foi tolerante ao estresse salino, o que foi indicado por seu crescimento em meio sólido suplementado com 30 g L-1 de NaCl in vitro. Cinco isolados apresentaram alta dissimilaridade em perfis protéicos e o seqüenciamento do gene 16S rDNA em dois deles revelou que apresentam novas seqüências de Azospirillum
Niche Construction and Exploitation by Agrobacterium: How to Survive and Face Competition in Soil and Plant Habitats
WOS:000456327800004International audienceAgrobacterium populations live in different habitats (bare soil, rhizosphere, host plants), and hence face different environmental constraints. They have evolved the capacity to exploit diverse resources and to escape plant defense and competition from other microbiota. By modifying the genome of their host, Agrobacterium populations exhibit the remarkable ability to construct and exploit the ecological niche of the plant tumors that they incite. This niche is characterized by the accumulation of specific, low molecular weight compounds termed opines that play a critical role in Agrobacterium's lifestyle. We present and discuss the functions, advantages, and costs associated with this niche construction and exploitation
Rhizobium Presence and Functions in Microbiomes of Non-leguminous Plants
The genus Rhizobium is well known in the context of its interaction with leguminous plants. The symbiosis Rhizobium-legume constitutes a significant source of ammonia in the biosphere. Rhizobium species have been studied and applied as biofertilizers for decades in legumes and nonlegumes, due to the potential as N-fixer and plant growth promoter. Since its discovery, conventional culture-dependent techniques were used to isolate Rhizobium members from their natural niche, the nodule, and their identification was routinely performed via 16S rRNA gene and different housekeeping genes. Biotechnological advances based on the use of omics-based technologies showed that species belonging to the genus Rhizobium are keystone taxa in several diverse environments, such as forests, agricultural land, Arctic, and Antarctic ecosystems, contaminated soils and plant-associated microbiota. In this chapter, we will summarize the advances in the study of the Rhizobium genus, from culturomics strategies to modern omics methodologies, mostly based on next-generation sequencing approaches. These cutting-edge molecular approaches are fundamental in the study of the behavior of Rhizobium species in their interaction with Non-leguminous plants, supporting their potential as an ecological alternative to chemical fertilizers in the battle against Climatic Change