2,823 research outputs found

    Determination of physical and chemical stability in pressurised metered dose inhalers: potential new techniques

    Get PDF
    INTRODUCTION: Pressurised metered dose inhalers (pMDIs) are subject to rigorous physical and chemical stability tests during formulation. Due to the time and cost associated with product development studies, there is a need for online techniques to fast screen new formulations in terms of physical and chemical (physico-chemical) stability. The problem with achieving this is that pMDIs are by their definition, pressurised, making the direct observation of physico-chemical properties in situ difficult. AREAS COVERED: This review highlights the characterisation tools that can enhance the product development process for pMDIs. Techniques investigated include: laser diffraction, Raman spectroscopy, isothermal ampoule calorimetry, titration calorimetry and gas perfusion calorimetry. The operational principles behind each technique are discussed and complemented with examples from the literature. EXPERT OPINION: Laser diffraction is well placed to analyse real-time physical stability as a function of particle size; however, its use is restricted to suspension pMDIs. Raman spectroscopy can be potentially used to attain both suspension and solution pMDI spectra in real time; however, the majority of experiments are ex-valve chemical composition mapping. Calorimetry is an effective technique in capturing both chemical and physical degradations of APIs in real time but requires redevelopment to withstand pressure for the purposes of pMDI screening

    HIPAD - A Hybrid Interior-Point Alternating Direction algorithm for knowledge-based SVM and feature selection

    Full text link
    We consider classification tasks in the regime of scarce labeled training data in high dimensional feature space, where specific expert knowledge is also available. We propose a new hybrid optimization algorithm that solves the elastic-net support vector machine (SVM) through an alternating direction method of multipliers in the first phase, followed by an interior-point method for the classical SVM in the second phase. Both SVM formulations are adapted to knowledge incorporation. Our proposed algorithm addresses the challenges of automatic feature selection, high optimization accuracy, and algorithmic flexibility for taking advantage of prior knowledge. We demonstrate the effectiveness and efficiency of our algorithm and compare it with existing methods on a collection of synthetic and real-world data.Comment: Proceedings of 8th Learning and Intelligent OptimizatioN (LION8) Conference, 201

    Isothermal calorimetry: a predictive tool to model drug-propellant interactions in pressurized metered dose systems

    Get PDF
    The purpose of this work was to evaluate gas perfusion isothermal calorimetry (ITC) as a method to characterize the physicochemical changes of active pharmaceutical ingredients (APIs) intended to be formulated in pressurized metered dose inhalers (pMDIs) after exposure to a model propellant. Spray dried samples of beclomethasone dipropionate (BDP) and salbutamol sulphate (SS) were exposed to controlled quantities of 2H,3H-decafluoropentane (HPFP) to determine whether ITC could be used as a suitable analytical method for gathering data on the behavioural properties of the powders in real time. The crystallization kinetics of BDP and the physiochemical properties of SS were successfully characterized using ITC and supported by a variety of other analytical techniques. Correlations between real and model propellant systems were also established using hydrofluoroalkane (HFA-227) propellant. In summary, ITC was found to be suitable for gathering data on the crystallization kinetics of BDP and SS. In a wider context, this work will have implications on the use of ITC for stability testing of APIs in HFA-based pMDIs

    The Explication Defence of Arguments from Reference

    Get PDF
    In a number of influential papers, Machery, Mallon, Nichols and Stich have presented a powerful critique of so-called arguments from reference, arguments that assume that a particular theory of reference is correct in order to establish a substantive conclusion. The critique is that, due to cross-cultural variation in semantic intuitions supposedly undermining the standard methodology for theorising about reference, the assumption that a theory of reference is correct is unjustified. I argue that the many extant responses to Machery et al.’s critique do little for the proponent of an argument from reference, as they do not show how to justify the problematic assumption. I then argue that it can in principle be justified by an appeal to Carnapian explication. I show how to apply the explication defence to arguments from reference given by Andreasen (for the biological reality of race) and by Churchland (against the existence of beliefs and desires)

    Background risk of breast cancer and the association between physical activity and mammographic density

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/ by/4.0

    Spatial Variation in Foraging Behaviour of a Marine Top Predator (Phoca vitulina) Determined by a Large-Scale Satellite Tagging Program

    Get PDF
    The harbour seal (Phoca vitulina) is a widespread marine predator in Northern Hemisphere waters. British populations have been subject to rapid declines in recent years. Food supply or inter-specific competition may be implicated but basic ecological data are lacking and there are few studies of harbour seal foraging distribution and habits. In this study, satellite tagging conducted at the major seal haul outs around the British Isles showed both that seal movements were highly variable among individuals and that foraging strategy appears to be specialized within particular regions. We investigated whether these apparent differences could be explained by individual level factors: by modelling measures of trip duration and distance travelled as a function of size, sex and body condition. However, these were not found to be good predictors of foraging trip duration or distance, which instead was best predicted by tagging region, time of year and inter-trip duration. Therefore, we propose that local habitat conditions and the constraints they impose are the major determinants of foraging movements. Specifically the distance to profitable feeding grounds from suitable haul-out locations may dictate foraging strategy and behaviour. Accounting for proximity to productive foraging resources is likely to be an important component of understanding population processes. Despite more extensive offshore movements than expected, there was also marked fidelity to the local haul-out region with limited connectivity between study regions. These empirical observations of regional exchange at short time scales demonstrates the value of large scale electronic tagging programs for robust characterization of at-sea foraging behaviour at a wide spatial scale

    The creation of new rotation arc to the rat latissimus dorsi musculo-cutaneous flap with delay procedures

    Get PDF
    BACKGROUND: Latissimus dorsi musculocutaneous flap is one of the most frequently performed reconstructive techniques in surgery. Latissimus dorsi muscle has two arcs of rotation. It is classified as type V muscle. This muscle can be elevated on the thoracodorsal artery to cover large defects in the anterior chest and also, the muscle can be elevated on the segmental vessels to cover midline defects posteriorly. The aim of this study was to create a new arc of rotation on a vertical axis for the muscle and investigate effectiveness of vascular and chemical delays on the latissimus dorsi muscle flap with an inferior pedicle in an experimental rat model. We hypothesized that the latissimus dorsi muscle would be based on inferior pedicle by delay procedures. METHODS: We tested two different types of delay: vascular and combination of vascular and chemical. We also tried to determine how many days of "delay" can elicit beneficial effects of vascular and combination delays in an inferior pedicled latissimus dorsi musculocutaneous flap. To accomplish this, 48 male Sprague-Dawley rats were randomly subjected to vascular or combination delay (vascular and chemical). In addition, one ear of each rat was assigned into a delay procedure and the other ear was used as a control. Results were evaluated macroscopically, and micro-angiography and histological examinations were also performed. As a result, there was a significant difference in viable flap areas between vascular delay alone and control groups (p < 0.05). RESULTS: The higher rate of flap viability was obtained in seven-day vascular delay alone. However, there was no significant difference in the viability between seven-day vascular delay and five-day vascular delay (p < 0.05), so the earliest time when the flap viability could be obtained was at five days. The rate of flap viability was significantly higher in the vascular delay combined with chemical delay than the control group (p < 0.05). CONCLUSION: The combination of vascular and chemical delays increased the rate of viability. Nevertheless, there was no significant difference between vascular delay alone and combination of vascular and chemical delays. Chemical delay did not significantly decrease the delay period. Better histological and microangiographical results were achieved in delay groups compared to control groups. We concluded that the arch of the latissimus dorsi musculocutaneous flap can be changed and the flap can be used for various purposes with the delay procedures

    Mammographic density, breast cancer risk and risk prediction

    Get PDF
    In this review, we examine the evidence for mammographic density as an independent risk factor for breast cancer, describe the risk prediction models that have incorporated density, and discuss the current and future implications of using mammographic density in clinical practice. Mammographic density is a consistent and strong risk factor for breast cancer in several populations and across age at mammogram. Recently, this risk factor has been added to existing breast cancer risk prediction models, increasing the discriminatory accuracy with its inclusion, albeit slightly. With validation, these models may replace the existing Gail model for clinical risk assessment. However, absolute risk estimates resulting from these improved models are still limited in their ability to characterize an individual's probability of developing cancer. Promising new measures of mammographic density, including volumetric density, which can be standardized using full-field digital mammography, will likely result in a stronger risk factor and improve accuracy of risk prediction models
    corecore