3 research outputs found

    Lesions that do or do not impair digit span: a study of 816 stroke survivors

    Get PDF
    Prior studies have reported inconsistency in the lesion sites associated with verbal short-term memory impairments. Here we asked: How many different lesion sites can account for selective impairments in verbal short-term memory that persist over time, and how consistently do these lesion sites impair verbal short-term memory? We assessed verbal short-term memory impairments using a forward digit span task from the Comprehensive Aphasia Test. First, we identified the incidence of digit span impairments in a sample of 816 stroke survivors (541 males/275 females; age at stroke onset 56 ± 13 years; time post-stroke 4.4 ± 5.2 years). Second, we studied the lesion sites in a subgroup of these patients (n = 39) with left hemisphere damage and selective digit span impairment-defined as impaired digit span with unimpaired spoken picture naming and spoken word comprehension (tests of speech production and speech perception, respectively). Third, we examined how often these lesion sites were observed in patients who either had no digit span impairments or digit span impairments that co-occurred with difficulties in speech perception and/or production tasks. Digit span impairments were observed in 222/816 patients. Almost all (199/222 = 90%) had left hemisphere damage to five small regions in basal ganglia and/or temporo-parietal areas. Even complete damage to one or more of these five regions was not consistently associated with persistent digit span impairment. However, when the same regions were spared, only 5% (23/455) presented with digit span impairments. These data suggest that verbal short-term memory impairments are most consistently associated with damage to left temporo-parietal and basal ganglia structures. Sparing of these regions very rarely results in persistently poor verbal short-term memory. These findings have clinical implications for predicting recovery of verbal short-term memory after stroke

    Damage to Broca’s area does not contribute to long-term speech production outcome after stroke

    Get PDF
    Broca’s area in the posterior half of the left inferior frontal gyrus has long been thought to be critical for speech production. The current view is that long-term speech production outcome in patients with Broca’s area damage is best explained by the combination of damage to Broca’s area and neighbouring regions including the underlying white matter, which was also damaged in Paul Broca’s two historic cases. Here, we dissociate the effect of damage to Broca’s area from the effect of damage to surrounding areas by studying long-term speech production outcome in 134 stroke survivors with relatively circumscribed left frontal lobe lesions that spared posterior speech production areas in lateral inferior parietal and superior temporal association cortices. Collectively, these patients had varying degrees of damage to one or more of nine atlas-based grey or white matter regions: Brodmann areas 44 and 45 (together known as Broca’s area), ventral premotor cortex, primary motor cortex, insula, putamen, the anterior segment of the arcuate fasciculus, uncinate fasciculus and frontal aslant tract. Spoken picture description scores from the ComprehensiveAphasia Test were used as the outcome measure. Multiple regression analyses allowed us to tease apart the contribution of other variables influencing speech production abilities such as total lesion volume and time post-stroke. We found that, in our sample of patients with left frontal damage, long-term speech production impairments (lasting beyond 3 months post-stroke) were solely predictedby the degree of damage to white matter, directly above the insula, in the vicinity of the anterior part of the arcuate fasciculus, with no contribution from the degree of damage to Broca’s area (as confirmed with Bayesian statistics). The effect of white matter damage cannot be explained by a disconnection of Broca’s area, because speech production scores were worse after damage to the anterior arcuate fasciculus with relative sparing of Broca’s area than after damage to Broca’s area with relative sparing of the anterior arcuate fasciculus. Our findings provide evidence for three novel conclusions: (i) Broca’s area damage does not contribute to long-term speech production outcome after left frontal lobe strokes; (ii) persistent speech production impairments after damage to the anterior arcuate fasciculus cannot be explained by a disconnection of Broca’s area; and (iii) the prior association between persistent speech production impairments and Broca’s area damage can be explained by co-occurring white matter damage, above the insula, in the vicinity of the anterior part of the arcuate fasciculus
    corecore