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Damage to Broca’s area does not contribute
to long-term speech production outcome
after stroke

Andrea Gajardo-Vidal,1,2,† Diego L. Lorca-Puls,1,3,† PLORAS team,1 Holly Warner,1

Bawan Pshdary,1 Jennifer T. Crinion,4 Alexander P. Leff,4,5 Thomas M. H. Hope,1

Sharon Geva,1 Mohamed L. Seghier,6,7 David W. Green,8 Howard Bowman9,10 and
Cathy J. Price1

†These authors contributed equally to this work.

Broca’s area in the posterior half of the left inferior frontal gyrus has long been thought to be critical for speech production. The

current view is that long-term speech production outcome in patients with Broca’s area damage is best explained by the combin-

ation of damage to Broca’s area and neighbouring regions including the underlying white matter, which was also damaged in Paul

Broca’s two historic cases. Here, we dissociate the effect of damage to Broca’s area from the effect of damage to surrounding areas

by studying long-term speech production outcome in 134 stroke survivors with relatively circumscribed left frontal lobe lesions

that spared posterior speech production areas in lateral inferior parietal and superior temporal association cortices. Collectively,

these patients had varying degrees of damage to one or more of nine atlas-based grey or white matter regions: Brodmann areas 44

and 45 (together known as Broca’s area), ventral premotor cortex, primary motor cortex, insula, putamen, the anterior segment of

the arcuate fasciculus, uncinate fasciculus and frontal aslant tract. Spoken picture description scores from the Comprehensive

Aphasia Test were used as the outcome measure. Multiple regression analyses allowed us to tease apart the contribution of other

variables influencing speech production abilities such as total lesion volume and time post-stroke. We found that, in our sample of

patients with left frontal damage, long-term speech production impairments (lasting beyond 3 months post-stroke) were solely pre-

dicted by the degree of damage to white matter, directly above the insula, in the vicinity of the anterior part of the arcuate fascic-

ulus, with no contribution from the degree of damage to Broca’s area (as confirmed with Bayesian statistics). The effect of white

matter damage cannot be explained by a disconnection of Broca’s area, because speech production scores were worse after damage

to the anterior arcuate fasciculus with relative sparing of Broca’s area than after damage to Broca’s area with relative sparing of

the anterior arcuate fasciculus. Our findings provide evidence for three novel conclusions: (i) Broca’s area damage does not contrib-

ute to long-term speech production outcome after left frontal lobe strokes; (ii) persistent speech production impairments after dam-

age to the anterior arcuate fasciculus cannot be explained by a disconnection of Broca’s area; and (iii) the prior association between

persistent speech production impairments and Broca’s area damage can be explained by co-occurring white matter damage, above

the insula, in the vicinity of the anterior part of the arcuate fasciculus.
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Introduction
For over 150 years, clinical aphasiology and behavioural

neurology have been fundamentally influenced by Paul

Broca’s finding that stroke survivors with severe and persist-

ent speech production impairments had damage to the third

convolution of the left frontal lobe (Broca, 1861a, b, 1865).

Since then, this part of the brain has been known as Broca’s

area. It is typically defined as encompassing Brodmann areas

(BA) 44 (or pars opercularis) and 45 (or pars triangularis) in

the posterior half of the left inferior frontal gyrus (Ardila

et al., 2016; Papitto et al., 2020). Importantly, Paul Broca

was not able to define the exact subcortical extent of the

lesions in his patients because, being aware of their historical

relevance, he decided not to dissect the specimens but pre-

serve them for future research inquiry. Broca’s descriptions

therefore focused on the parts of the lesions that were visible

to him (primarily at the level of the cortex) without evaluat-

ing the potential contribution of neighbouring damage, for

example, to the underlying white matter and surrounding

cortical areas. It was not until 2007 that the full extent of

the lesions incurred by Broca’s two famous cases (Broca,

1861a, b) was revealed in an MRI study showing damage to

multiple subcortical grey and white matter regions

(Dronkers et al., 2007).

The brain areas required for speech production, and the

type of aphasia that results from damage to the posterior

half of the left inferior frontal gyrus, have been continually

debated since Broca’s seminal work (Marie, 1906; Mohr

et al., 1978; Alexander et al., 1990; Lorch, 2008;

Fridriksson et al., 2015; Tremblay and Dick, 2016). For ex-

ample, Mohr et al. (1978) reported that effortful speech ar-

ticulation was the consequence of infarction affecting

Broca’s area and neighbouring regions, including those deep

in the brain. Together, these prior findings suggest that the

combination of damage to Broca’s area and surrounding

regions may explain persistent speech production impair-

ments in patients with left frontal lobe strokes. Our

alternative hypothesis is that persistent speech production

impairments might be the consequence of damage to neigh-

bouring regions, irrespective of the lesion status in Broca’s

area. We tested these competing hypotheses, by investigating

whether speech production impairments were worse in

stroke survivors who had damage to: Broca’s area (i.e. BA44

and BA45) that spared surrounding regions, surrounding

regions that spared Broca’s area, or both Broca’s area and

surrounding regions.

Given the stereotyped distribution of vascular lesions, an

ischaemic stroke will typically damage multiple neighbouring

brain regions including anatomically proximal grey and

white matter. Lobar haemorrhages will have a similar effect

even though they do not respect vascular territories.

Subcortical haemorrhages primarily affect white matter,

with secondary effects (retrograde and trans-synaptic degen-

eration) sometimes causing later grey matter loss. In all

cases, it is therefore difficult to determine which part of the

lesion site is driving the observed behavioural effects

(Kimberg et al., 2007; Richardson et al., 2012; Inoue et al.,

2014; Mah et al., 2014; Sperber and Karnath, 2017). Here

we tackled this problem in two ways. First, we studied a

large number of stroke survivors who (i) all had left frontal

lobe damage; (ii) differed in the degree of damage to Broca’s

area and surrounding areas; and (iii) preserved posterior

speech production regions in lateral inferior parietal and

superior temporal association cortices. Second, having

established the relative contribution of Broca’s area and

neighbouring regions using multiple regression on continu-

ous measures of structural damage (i.e. percentage of

damage to each area) and speech production abilities (i.e.

speech production scores), we conducted a series of post hoc

group comparisons on small subsets of patients with distinct

lesion sites.

Our selection of brain areas surrounding Broca’s area was

based on a combination of anatomical and functional evi-

dence and the availability of atlas-based regions of interest.

Specifically, there are a number of long association white
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matter tracts that are known to link the left inferior frontal

gyrus with other nodes of the speech network (Thiebaut de

Schotten et al., 2011; Rojkova et al., 2016). Here, we exclu-

sively focus on the following three fibre pathways: (i) the an-

terior segment of the arcuate fasciculus (also referred to as

the third branch of the superior longitudinal fasciculus or

SLF III) that connects the posterior inferior frontal cortex

with the parieto-temporal cortex (Catani et al., 2005;

Martino et al., 2013; Bernard et al., 2019); (ii) the uncinate

fasciculus that connects the medial and lateral orbitofrontal

cortex with anterior parts of the temporal lobe (Catani and

Thiebaut de Schotten, 2008; Martino et al., 2011); and (iii)

the frontal aslant tract that connects the posterior inferior

frontal cortex with the supplementary/pre-supplementary

motor area (Catani et al., 2012a; Vergani et al., 2014). In

addition, we selected six grey matter regions: BA44 and

BA45 (different parts of Broca’s area), the ventral premotor

cortex (vPMC), primary motor cortex (M1), superior central

insula and putamen. Damage to each of these white/grey

matter regions has been associated with speech production

impairments in prior lesion studies (Baldo et al., 2011;

Fridriksson et al., 2013; Basilakos et al., 2014; Seghier et al.,
2014; van Geemen et al., 2014; Mirman et al., 2015;

Itabashi et al., 2016).

Unlike previous studies, our analyses were aimed at disen-

tangling how speech production abilities, months after a

stroke centred on the left frontal lobe, were affected by dam-

age to Broca’s area and the degree to which such effects

were influenced by co-occurring damage to a specific set of

neighbouring regions. Given the methodological constraints

described above, it was not feasible to investigate, within the

same study, all the grey or white matter regions that have

previously been associated with speech production. For ex-

ample, we did not examine temporal and parietal regions

(Stark et al., 2019; Forkel et al., 2020), the internal capsule

(Naeser et al. 1982), the medial subcallosal fasciculus or the

periventricular white matter area (Naeser et al., 1989). Nor

did we investigate the inferior fronto-occipital fasciculus or

long segment of the arcuate fasciculus because a previous

well-powered lesion study was unable to establish a signifi-

cant relationship between persistent speech production

impairments and damage to either of these white matter

tracts after controlling for damage to the anterior segment

of the arcuate fasciculus (Fridriksson et al., 2013).

Nevertheless, we note that in our patient sample, lesion load

in the anterior segment of the arcuate fasciculus was highly

correlated [r(134) = 0.915] with lesion load in the long seg-

ment of the arcuate fasciculus, both of which were derived

from the Natbrainlab atlas (Catani and Thiebaut de

Schotten, 2008; Thiebaut de Schotten et al., 2011). High col-

linearity between damage to the anterior and long segments

of the arcuate fasciculus (i) is a consequence of both these

tracts running in extremely close proximity in the fronto-

parietal white matter above the insula (Catani et al., 2005;

Martino et al., 2013); and (ii) makes it impossible to dissoci-

ate their effects in the current study. In light of this tight re-

lationship, stroke damage to white matter, above the insula,

in the vicinity of the anterior part of the arcuate fasciculus

(aAF) is highly likely to affect fibres from both the anterior

and long segments of the arcuate fasciculus, as well as other

crossing white matter tracts.

In summary, Broca’s area continues to occupy a promin-

ent position in clinical and non-clinical neuroscience

(Tremblay and Dick, 2016; Fedorenko and Blank, 2020).

We do not question the role that Broca’s area has been

shown to play in normal speech production (Papoutsi et al.,

2009; Flinker et al., 2015; Long et al., 2016; Mugler et al.,

2018). Our focus is on testing whether damage to Broca’s

area contributes to speech production impairments that per-

sist for at least 3 months after a left frontal lobe stroke.

Although we do not investigate the effect of Broca’s area

damage on speech production in the acute phase after stroke

(53 months), our study is particularly relevant for under-

standing clinical outcomes given that terms such as ‘Broca’s

area’ and ‘Broca’s aphasia’ still dominate the clinical aphasi-

ology literature (Hillis, 2007; Ardila, 2010). Likewise, al-

though we do not characterize how spared brain regions

functionally reorganize to compensate for the initial impact

of Broca’s area damage, our findings should provide a

framework to motivate and interpret lesion-site-specific stud-

ies of recovery in the future.

Materials and methods

Regions of interest

Three probabilistic human brain atlases that explicitly accom-
modate inter-subject variability in anatomy were used to define
the borders of the grey and white matter regions of interest. The
six grey matter regions were derived from the Brainnetome atlas
(Fan et al., 2016). These were: BA44, BA45, vPMC, M1, super-
ior central insula and putamen. Particular attention was paid
when defining Broca’s area, M1 and superior central insula.
Specifically, BA44 and BA45 (together known as Broca’s area)
were investigated individually rather than being combined into
a single area, given the well-established differentiation between
these two regions in terms of cyto-architecture (Amunts et al.,
1999), receptor-architecture (Amunts et al., 2010), structural/
functional connectivity (Anwander et al., 2006; Margulies and
Petrides, 2013) and, more importantly, function (Gough et al.,
2005; Klaus and Hartwigsen, 2019). For M1, we used the two
(of five) M1 subregions from the Brainnetome atlas that are
implicated in the motor control of the speech articulators (i.e.
face, tongue and larynx). Regarding the insula, damage to both
banks of the superior central sulcus centred at MNI coordinates
[–36, 1, 10] has consistently been associated with speech pro-
duction impairments after stroke (Dronkers, 1996; Baldo et al.,
2011; Chenausky et al., 2020). Therefore, the two (of six) insu-
lar subregions from the Brainnetome atlas that permitted us to
capture this specific subpart of the insula were selected, which is
why we refer to our insula region of interest with the ad hoc
term ‘superior central insula’.

Two (of three) white matter tracts were derived from the
Natbrainlab atlas (Catani and Thiebaut de Schotten, 2008;
Thiebaut de Schotten et al., 2011). These were the anterior

Speech production after Broca’s area damage BRAIN 2021: Page 3 of 16 | 3

D
ow

nloaded from
 https://academ

ic.oup.com
/brain/advance-article/doi/10.1093/brain/aw

aa460/6124755 by guest on 07 February 2021



segment of the arcuate fasciculus (to index damage to aAF) and
the uncinate fasciculus. The third (frontal aslant tract) was taken
from the atlas developed by Rojkova et al. (2016) because this
tract is not currently part of the Natbrainlab atlas. The prefer-
ence for the Natbrainlab atlas was motivated by the fact that
prior investigations that informed the current study had also
used this atlas (Fridriksson et al., 2013; Basilakos et al., 2014).
In Supplementary Table 1 we replicate our main result (i.e.
Model 2 reported below) using white matter masks derived ex-
clusively from the Rojkova et al. (2016) atlas.

The borders of the regions were determined using a probabil-
ity threshold of 50% for grey matter and 25% for white matter.
These probability thresholds are within the range of those used
in previous studies (Fridriksson et al., 2013; Lunven et al.,
2015; Ivanova et al., 2016; Hope et al., 2016; Wiesen et al.,
2019). A probability threshold of 50% means that the anatom-
ical localization of the region was consistent for at least 50% of
the neurologically-intact participants who contributed to the
construction of the atlas. A lower probability threshold for the
Natbrainlab-derived white matter regions was adopted because
higher probability thresholds resulted in extremely small white
matter masks. See Table 1 and Fig. 1 for details.

Patient selection criteria

Patients with an ischaemic or haemorrhagic stroke were selected
from the Predicting Language Outcome and Recovery After
Stroke (PLORAS) database (Seghier et al., 2016), if they had
unilateral damage centred on the left frontal lobe (including sub-
cortical grey/white matter structures) as defined by a neurologist
(A.P.L.). Subsequently, the T1-weighted whole brain image for
each patient was visually inspected by A.G-V. and D.L.L-P. to
rule out lesion description inaccuracies. Finally, patients whose
lesions extended into posterior speech production areas in lat-
eral inferior parietal and superior temporal association cortices
were excluded from the selected sample. Inclusion criteria were:
(i) aged over 18 years; (ii) no history of neurological or psychi-
atric illness (other than stroke); (iii) native speaker of English;

(iv) right handed pre-morbidly; (v) at least 3 months post-stroke
(to allow enough time for spontaneous functional reorganisation
to occur); and (vi) 510 years since stroke onset (to control for
longer term changes related to cognitive decline).

These criteria were met by 134 left-hemisphere stroke
patients, aged between 31 and 87 years (mean age = 60 years).
Summary demographic, clinical and lesion information for the
full sample are provided in Table 2 and Fig. 2. Since 92% (123
of 134; Supplementary Fig. 1) of the patients in our sample
were in the chronic phase post-stroke (46 months), terms such
as ‘long-term’, ‘long-lasting’ and ‘persistent’ throughout the cur-
rent paper refer to speech production impairments that generally
last longer than 6 months post-stroke. Further details are pro-
vided in Supplementary material.

The study was approved by the London Queen Square
Research Ethics Committee. All patients gave written informed
consent prior to participation and were compensated £10 per
hour for their time.

Behavioural assessment

All patients recruited to the PLORAS database are assessed with
the Comprehensive Aphasia Test (CAT; Swinburn et al., 2004).
Across the 27 subtests that comprise the CAT, we selected the
spoken picture description task as our behavioural index of
speech production abilities, with the goal of ensuring the eco-
logical validity of our findings by assessing connected speech
production (rather than single word production) in a setting
that resembled those encountered in real-world scenarios more
closely. Our decision was also motivated by recent efforts to
characterise the complex nature of speech production, their defi-
cits and neural correlates using samples of connected speech
(Stark et al., 2019; Alyahya et al., 2020; Ding et al., 2020). The
CAT spoken picture description task was administered to each
patient and the spoken responses scored following standardized
procedures described in the assessment battery manual. First,
the participant is shown a picture depicting a complex scene
and prompted to describe verbally what is happening for 1 min

Table 1 Atlas-defined regions and supporting literature for the role of the selected regions in speech production

Atlas Left hemisphere

regions of interest

Atlas label Supporting literature

Brainnetome BA44

BA45

IFG_L_6_1 and IFG_L_6_6

IFG_L_6_3

Broca (1861a, b); Price et al. (1996); Hillis et al. (2004);

Flinker et al. (2015)

Ventral premotor cor-

tex (vPMC)

PrG_L_6_6 Wise et al. (1999); Price (2012); Schwartz et al. (2012);

Seghier et al. (2014); van Geemen et al. (2014)

Primary motor cortex

(M1)

PrG_L_6_1 and PrG_L_6_5 Wildgruber et al. (1996); Dronkers and Ogar (2004);

Price (2012); Long et al. (2016); Basilakos et al. (2015)

Superior central insula
(Ins)

INS_L_6_5 and INS_L_6_6 Dronkers (1996); Wise et al. (1999); Dronkers and Ogar
(2004); Ackermann and Riecker (2004); Baldo et al.

(2011); Oh et al. (2014); Chenausky et al. (2020)

Putamen (Put) Str_L_6_4 and Str_L_6_6 Gil Robles et al. (2005); Booth et al. (2007); Oberhuber
et al. (2013); Seghier et al. (2014)

Natbrainlab Anterior part of the ar-

cuate fasciculus (aAF)

Anterior_Segment_Left Catani et al. (2005); Marchina et al. (2011); Wilson et al.

(2011); Fridriksson et al. (2013); Hope et al. (2016)

Uncinate fasciculus (UF) Uncinate_Left Grossman et al. (2003); Papagno (2011); Catani et al.

(2013); Basilakos et al. (2014)

Rojkova et al. Frontal aslant tract
(FAT)

Frontal_Aslant_Left Catani et al. (2013); Basilakos et al. (2014); Mandelli et al.
(2014); Dick et al. (2014, 2019)

Atlas label = labelling system used in each given atlas; Supporting literature = prior literature involving neurologically-intact controls and/or brain-damaged patients that have associ-

ated the selected brain regions with speech production.
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without prior practice. If the patient misses out areas of the pic-

ture, the tester is required to use prompts such as ‘What about

that?’. Second, the connected speech sample is scored on various

properties: the total number of appropriate information carrying

words (i.e. words that convey exact meaning in the appropriate

context and are correctly produced) minus the total number of
inappropriate information carrying words (i.e. information car-
rying words that are incorrectly selected and/or produced), plus
syntactic variety (on a 0–6 scale), grammatical well-formedness
(on a 0–6 scale) and speed of speech production (on a 0–3
scale). The summed scores are converted into a T-score. A T-
score 460 constitutes the impaired range.

The CAT spoken picture description task is a reasonable
proxy for natural speech production, because it requires patients
to interpret a complex scene and report their interpretation in a
coherent, free-form manner. However, there are no ‘pure’ indi-
ces of speech production. For example, in order to describe
what is happening in a picture, the patient must be able to rec-
ognise the objects that are present in the scene from low-level
visual features and retrieve semantic relationships between
objects. Thus, to account for impairments on the CAT spoken
picture description task that might be due to visual perceptual,
object recognition and/or semantic processing deficits, our anal-
yses (see below for details) factored out scores from the CAT se-
mantic memory task. This task involves viewing a target picture
(e.g. a monkey) and silently selecting one picture out of four
alternatives (e.g. banana, pear, chocolate and envelope) which is
most closely associated with the target.

MRI data acquisition, preprocessing
and lesion identification

T1-weighted high-resolution anatomical whole-brain volumes
were available for all patients (n = 134). One hundred and
eleven patients underwent structural MRI at the UCL Wellcome

Figure 1 The nine atlas-defined regions of interest. (A) The

top three rows show the six left cortical and subcortical grey matter

regions of interest defined using the Brainnetome atlas (Fan et al.,

2016). (B) The bottom three rows show the three white matter

tracts defined using tractography-based atlases of human brain con-

nections (Catani and Thiebaut de Schotten, 2008; Thiebaut de

Schotten et al., 2011; Rojkova et al., 2016). FAT = frontal aslant

tract; Ins = superior central insula; Put = putamen; UF = uncinate

fasciculus.

Table 2 Summary of demographic and clinical details

for all left frontal lobe stroke patients included in the

study

Demographic and clinical details Patients

n = 134

Age at stroke, years Mean 57.6

SD 12.1

Minimum 22.8

Maximum 85.9

Age at scan, years Mean 60.1

SD 12.1

Minimum 31.4

Maximum 87.4

Months since stroke Mean 30.1

SD 25.3

Minimum 3.0

Maximum 118.2

Total lesion volume, cm3 Mean 25.5

SD 35.0

Minimum 0.1

Maximum 217.4

Sex Number of females 47

Number of males 87

SPD score Mean 61.8

SD 8.3

Minimum 39

Maximum 75

SPD = spoken picture description T-score.
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Centre for Human Neuroimaging. The remaining 23 patients

were scanned at the Birkbeck-UCL Centre for Neuroimaging.

Four different research-dedicated MRI scanners (Siemens

Healthcare) were used to acquire the structural images: three

patients were imaged on a 3 T Prisma scanner, 78 on a 3 T

Trio scanner, 30 on a 1.5 T Sonata scanner, and 23 on a 1.5

T Avanto scanner. For anatomical images acquired on the 1.5 T

Avanto and 3 T Prisma scanners, a MPRAGE sequence (Mugler

and Brookeman, 1990) was used to acquire 176 sagittal slices

with a matrix size of 256 � 224, yielding a final spatial reso-

lution of 1 mm isotropic voxels (repetition time/echo time/inver-

sion time = 2730/3.57/1000 ms and 2530/3.34/1100 ms at 1.5

T and 3 T). For anatomical images acquired on the other two

scanners, a MDEFT sequence (Deichmann et al., 2004) was

used to acquire 176 sagittal slices with a matrix size of

256 � 224, yielding a final spatial resolution of 1 mm isotropic

voxels: repetition time/echo time/inversion time = 12.24/3.56/

530 ms and 7.92/2.48/910 ms at 1.5 T and 3 T, respectively.

All T1-weighted images were converted into a binary image of

the lesion in MNI space, using automated procedures reported

in Seghier et al. (2008); see Supplementary material for more

details. For each patient, the binary lesion image was visually

inspected and checked against the normalized T1-weighted ana-

tomical whole-brain volume/neurologist’s lesion description, and

improved if necessary. The binary lesion images allowed us to

delineate the lesions, to estimate total lesion volume, to generate

a lesion overlap map and to compute lesion load (% damaged)

in each of the nine atlas-defined regions of interest. These lesion
load values were the inputs to the regression analyses described
in the next section.

Explaining long-term speech
production outcome

To investigate whether inter-patient differences in speech pro-
ductions abilities were significantly explained by the degree of
damage to Broca’s area, surrounding brain regions or both, we
applied a series of multiple regression models to the data
(n = 134). Using multiple regression diagnostic statistics and
plots (Field, 2018), we established that our data met all core

assumptions for multiple regression, with the exception of ‘high
multicollinearity’ for two regressors of interest (vPMC and
frontal aslant tract) and one regressor of no interest (total lesion
volume). See Supplementary material for more details.

Each multiple regression model was designed to incrementally

and systematically test specific aspects of our hypotheses as
detailed below. The analyses were conducted in IBM SPSS
Statistics for Windows, Version 22.0 (IBM Corp., Armonk,
New York, USA). Comparison of correlation coefficients was
achieved via Fisher’s r-to-z transformation. We used an ‘enter’
rather than ‘stepwise’ method because we were interested in test-

ing the relative importance of individual a priori selected regions
of interest rather than in identifying the best combination of
regions of interest in a data-driven way. For Models 2 and 3

Figure 2 Lesion overlap map of 134 stroke patients. The figure shows the lesion overlap map for the full patient sample, where the colour

scale depicts the frequency of overlapping lesions at each given voxel in axial and sagittal slices. Coloured areas in and around the temporal horn

of the lateral ventricle indicate that our automated lesion identification procedure identified cerebrospinal fluid in enlarged ventricles as part of

the lesion.
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below, we factored out variance that was unrelated to lesion site
by including the following regressors of no interest: (i) total le-
sion volume; (ii) months post-stroke; (iii) age at stroke; and (iv)
scores from the CAT semantic memory task (to account for
impairments on the CAT spoken picture description task that
might be due to visual perceptual, object recognition and/or se-
mantic processing deficits). See Supplementary Fig. 2 for a cor-
relation matrix showing the shared variance among the different
variables.

In Model 1, we tested how well speech production impair-
ments were explained by the degree of damage to BA44 versus
BA45. The two regressors of interest were lesion load in BA44
and BA45. The outcome variable was the spoken picture de-
scription (speech production) scores.

In Model 2, we excluded BA45 and added the seven remain-
ing regions of interest into the regression (vPMC, M1, superior
central insula, putamen, aAF, uncinate fasciculus and frontal
aslant tract). Lesion load in BA45 was excluded because Model
1 indicated it was not a significant predictor.

In Model 3, we limited the analysis to two regressors: lesion
load in BA44 and aAF, because aAF was the only significant
anatomical predictor in Model 2. To test whether the effect of
BA44 damage on speech production abilities was non-linear, the
first version of Model 3 (i.e. Model 3a) included a quadratic
term (i.e. a curvilinear relationship indicating that the greater
the degree of BA44 damage the greater the detrimental effect on
speech production abilities). In contrast, the second version of
Model 3 (i.e. Model 3b) included an interaction term to test the
possibility that the effect of BA44 damage on speech production
abilities might be moderated by the degree of aAF damage. To
test whether dorsal (dBA44) and ventral (vBA44) components
of BA44 contribute differently to speech production, as pro-
posed by Papoutsi et al. (2009), we replaced BA44 with: (i)
dBA44 (i.e. Brainnetome atlas region IFG_L_6_1) in Model 3c;
or (ii) vBA44 (i.e. Brainnetome atlas region IFG_L_6_6) in
Model 3d.

In Model 4, lesion load in aAF was paired with either BA45
(Model 4a), BA44 (Model 4b), vPMC (Model 4c) or M1
(Model 4d) in the context of regression-based mediation analy-
ses. This allowed us to estimate the degree to which the effect of
damage to different parts of the left posterior inferior frontal
cortex on our speech production scores was explained by co-
occurring damage to the underlying white matter. Each of these
analyses used a three-step procedure (Hayes and Rockwood,
2017, 2020) implemented in the PROCESS macro (version 3.5)
for SPSS (Hayes, 2018). In Step 1, the total effect of cortical
damage (e.g. to BA44) was calculated by running a regression
analysis with lesion load in BA44 as the only regressor and
speech production scores as the outcome variable. This pro-
duced the regression coefficient c. In Step 2, lesion load in BA44
was the only regressor and lesion load in aAF was the outcome
variable. This produced the regression coefficient a. In Step 3,
the regressors were lesion load in BA44 (regression coefficient c0

or direct effect) and lesion load in aAF (regression coefficient b)
and the outcome variable was speech production scores. Steps
1–3 were repeated for each of the other cortical areas (BA45,
vPMC and M1). The product of regression coefficients a (from
Step 2) and b (from Step 3) is referred to as the indirect or medi-
ation effect (i.e. the part of the total effect of cortical damage
that is mediated by co-occurring aAF damage). The significance
of the indirect effect was determined via statistical inference

based on bootstrap confidence intervals (built using 10 000
bootstrap samples). See Supplementary Fig. 3 for a schematic
depiction of a standard simple mediation analysis.

The goal of all our analyses was to estimate the effect of dam-
age in regions of interest (primarily BA44 and BA45) that have
previously been associated with speech production by an ample
body of evidence (Table 1). In this context, we considered that
the risk of making type I errors (false negatives) was greater
than that of making type II errors (false positives). Put different-
ly, based on prior evidence the unexpected result would be not
to find (rather than to find) a significant relationship between
damage and speech production impairments for all the regions
examined. For these reasons, it would have been overly conser-
vative to apply a correction for multiple comparisons within
Model 2 (our main result), for example. Instead, we quantified
the strength of the evidence in favour of the null hypothesis (no
effect of Broca’s area damage) compared to the alternative hy-
pothesis (an effect of Broca’s area damage). This requires
Bayesian statistics, because frequentist approaches can only re-
ject the null in favour of the alternative hypothesis. The
Bayesian analysis reported in the ‘Results’ section was imple-
mented in JASP (Version 0.12.2, JASP Team) using default un-
informative priors (i.e. a stretched beta distribution with width
= 1, which yields a uniform distribution on Pearson’s r) because
we opted to remain agnostic as to the shape of the effect size
distribution.

Post hoc analyses

To compare the effect of damage to (i) BA44 only; (ii) aAF
only; or (iii) both, we needed to select a lesion load threshold
above which a particular region would be deemed to be ‘dam-
aged’ and control for differences in total lesion volume. Our
choice was governed by the small number of patients with rela-
tively focal damage to BA44. Within our sample of 134
patients, only eight had 420% damage to BA44 with 520%
damage to aAF, 13 had 420% damage to aAF with 520%
damage to BA44 and BA21 had 420% damage to both aAF
and BA44. Patient numbers fell when these thresholds were
changed (see Supplementary Table 2 for details).

We then matched total lesion volume (range and mean) across
groups. First, we excluded patients with lesions that were either
smaller than the minimum (11.1 cm3) or larger than the max-
imum (62.2 cm3) total lesion volume in the BA44 group.
Second, we matched for mean total lesion volume across
groups, by excluding the patient with the smallest lesion (11.1
cm3) in the BA44 group and the two patients with the largest
lesions (59.3 and 58.6 cm3) in the aAF group (see
Supplementary Table 3 for details). Critically, whereas the for-
mer patient (from the BA44 group) performed within normal
limits on the spoken picture description task, the latter two
patients (from the aAF group) both had impaired spoken pic-
tures description scores. Therefore, our final results would have
been strengthened rather than weakened if we had not applied
this strict matching procedure to ensure that total lesion volume
could not explain lesion location effects. In total, there were
seven, seven and eight patients who were matched for total le-
sion volume (range and mean) in the BA44, aAF, and
BA44 + aAF groups, respectively. In addition, these groups did
not differ in terms of age at stroke, age at scan and time post-
stroke (all P40.45; Supplementary Table 3). All seven patients
in the BA44 group and all but one (PS1129) of the seven
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patients in the aAF group had ischaemic strokes. Therefore, any
difference in speech production scores between the BA44 and
aAF groups cannot be explained by the type of stroke. See
Supplementary Figs 4 and 5 for lesion location details.

The speech production scores for the BA44, aAF, and
BA44 + aAF groups were submitted to a one-way ANOVA.
Given the small number of patients in each group, pairwise
comparisons were conducted using Fisher’s least significant dif-
ference (LSD) method, which does not control the family-wise
error rate.

Data availability

The data that support the findings of this study are available
from C.J.P. (c.j.price@ucl.ac.uk) upon reasonable request.

Results

Main analyses

Model 1: BA44 versus BA45

Lesion load in BA44 but not BA45 significantly predicted

speech production scores (Table 3). Importantly, however,

this two-region model only accounted for a small proportion

of the variability in speech production scores (R2 = 0.194,

P50.001).

As lesion load in BA45 did not make a unique contribu-

tion to the prediction of speech production scores, above

and beyond that of BA44, it was excluded from Model 2

(see below).

Models 2 and 3: The effect of damage to other left

frontal areas

When the effect of damage to regions neighbouring Broca’s

area was taken into account (i.e. Model 2 in Table 3), lesion

load in BA44 no longer explained speech production scores

(P = 0.567). Across all eight anatomical predictors included

in Model 2, only lesion load in aAF reached statistical sig-

nificance (P = 0.008). Critically, there was not any indication

of the existence of a non-linear relationship between BA44

damage and speech production abilities (i.e. the quadratic

term) when aAF damage was controlled for (i.e. Model 3a

in Table 3). Nor was there any evidence that the effect of

BA44 damage on speech production abilities was moderated

(i.e. the interaction term) by the degree of co-occurring aAF

damage (i.e. Model 3b in Table 3). Moreover, these results

did not change after segregating BA44 into dorsal and ven-

tral components (i.e. Model 3c and Model 3d in Table 3).

See Supplementary Table 4 for regressors of no interest.

Model 4: The importance of damage to aAF

Regression-based mediation analyses showed that, when

considered separately (i.e. one regressor only), lesion load in

each of our left posterior inferior frontal cortical regions

(BA45, BA44, vPMC or M1) made a significant contribution

to the prediction of speech production scores (see total effect

in Table 4). However, when paired with lesion load in aAF

(i.e. two regressors), each of these left posterior inferior

frontal cortical regions stopped being statistically significant

(see direct effect in Table 4). More importantly, these four

analyses revealed that 470% of the influence of BA45,

BA44, vPMC or M1 damage on speech production was

mediated by co-occurring damage to aAF.

In addition, we found that aAF damage co-occurred sig-

nificantly more with BA44 damage than BA45 damage

[r(134) = 0.627 versus 0.450; z = 3.487, P50.001]; see

bottom row of Table 4. Greater co-occurring aAF damage

after BA44 damage than BA45 damage provides an explan-

ation for the results of our first regression analysis (i.e.

Model 1).

Translating absence of evidence into

evidence of absence

When the unique effect of BA44 damage on speech produc-

tion scores (after covarying out lesion load in aAF, months

post-stroke, age at stroke, total lesion volume and semantic

memory scores) was re-expressed in terms of Bayes factors

Table 3 Results from multiple regression Models 1–3

Model Predictors R2 Adjusted R2 P-value Beta

1 0.194 0.182 – –

BA45 – – 0.395 0.101

BA44 – – 50.001 –0.511

2 0.515 0.466 – –

BA44 – – 0.567 0.102

vPMCa – – 0.479a –0.145a

M1 – – 0.541 0.116

Ins – – 0.749 0.046

Put – – 0.678 –0.053

aAF – – 0.008 –0.330

FATa – – 0.965a –0.010a

UF – – 0.367 –0.143

3a 0.501 0.473

BA44 – – 0.474 0.175

BA44 quadratic – – 0.534 –0.145

aAF – – 0.006 –0.295

3b 0.500 0.472

BA44 0.933 0.010

aAF 0.010 –0.297

BA44 � aAF 0.790 0.038

3c 0.500 0.476 – –

dBA44 – – 0.605 0.045

aAF – – 0.007 –0.290

3d 0.499 0.475 – –

vBA44 – – 0.844 0.016

aAF – – 0.008 –0.280

Anatomical predictors = lesion load in the atlas-defined areas for each of our 134 left

frontal lobe stroke patients. Models 2 and 3 also included the following regressors of

no interest: (i) total lesion volume, (ii) months post-stroke, (iii) age at stroke and (iv)

scores from the semantic memory task (see Supplementary Table 4 for regressors of

no interest). BA44 � aAF = interaction term; Beta = standardized beta coefficient;

dBA44 = dorsal BA44; FAT = frontal aslant tract; Ins = superior central insula; Put =

putamen; UF = uncinate fasciculus; vBA44 = ventral BA44.
aRegressor affected by multicollinearity; see Supplementary material for details.
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(BF), the evidence in favour of the null (i.e. damage to BA44

does not explain variance in speech production abilities) was

more than eight times stronger (BF = 0.116) than that in fa-

vour of the alternative (i.e. damage to BA44 does explain

variance in speech production abilities). This can be inter-

preted as positive evidence (Raftery, 1995) for the absence

of a unique long-lasting effect of Broca’s area damage on

speech production abilities. Conversely, for aAF, the evi-

dence in favour of the alternative was more than four times

stronger (BF = 4.389) than that in favour of the null. This

can be interpreted as positive evidence (Raftery, 1995) for

the presence of a unique long-lasting effect of aAF damage

on speech production abilities.

Post hoc analyses

Our analyses strongly imply that damage to aAF, not BA44,

is critical for explaining long-lasting impairments in speech

production abilities. To illustrate this finding further, we

identified three groups of patients who differed in the degree

of damage to BA44 versus aAF (see ‘Materials and methods’

section). These groups had been tightly matched in terms of

total lesion volume, age at stroke, age at scan and time post-

stroke (all P4 0.45; Supplementary Table 3). A one-way

ANOVA indicated that there was a significant effect of

group on speech production [F(2,19) = 5.028, P = 0.018]. A

Fisher’s LSD post hoc test showed that this occurred because

the aAF group performed significantly worse than the BA44

group on the spoken picture description task [mean ± stand-

ard deviation (SD) = 55.4±5.7 versus 62.9± 4.1;

P = 0.013], with no significant differences between the aAF

group, and the BA44 + aAF group (mean ± SD = 55.4± 5.7

versus 55.5±5.3; P = 0.979). Critically, these results did not

change after covarying out inter-patient differences in lesion

load in the superior central insula and putamen, which were

concurrently damaged in some of the patients from the aAF

group (Fig. 3 and Table 5).

When considering the subscores that contribute to our

aggregated speech production scores, we observed that the

speech output for the aAF group was poorer both in terms

of quality and quantity than that for the BA44 group as

reflected in their appropriate information carrying words

[mean = 19.0 versus 28.0, t(12) = 1.97, P = 0.036 one-

tailed], syntactic variety (mean = 3.4 versus 5.3, U = 6.5,

P = 0.009 one-tailed), grammatical well-formedness (mean =

3.6 versus 5.1, U = 11.5, P = 0.049 one-tailed), and speed of

speech production (mean = 1.6 versus 2.4, U = 8.0,

P = 0.019 one-tailed) ratings. See Supplementary Fig. 6 for

the spoken picture description responses of two exemplar

patients (one from the BA44 group and one from the aAF

group).

A comparison of the performance of the BA44 and aAF

groups across the remaining 26 tasks from the CAT is pro-

vided in Supplementary Table 5 for completeness.

Discussion
The aim of the current study was to dissociate the effect of

damage to Broca’s area and neighbouring brain regions on

long-term speech production abilities in the context of rela-

tively circumscribed left frontal lobe strokes. Our results

translate into the following three novel findings: (i) Broca’s

area damage does not contribute to long-term speech pro-

duction outcome after relatively circumscribed left frontal

lobe strokes; (ii) the long-lasting effect of damage to white

matter, above the insula, in the vicinity of aAF on speech

production cannot be explained in terms of a disconnection

of Broca’s area; and (iii) the prior association between

Broca’s area damage and long-lasting speech production

impairments can be accounted for by co-occurring damage

to white matter, above the insula, in the vicinity of aAF,

which is highly likely to include fibres from both the anterior

Figure 3 Degree of damage to the atlas-defined regions of

interest per group. The figure shows the percentage of damage

to each of the atlas-defined regions for each of the patients in each

of the three groups of interest. Mean damage (per group) is repre-

sented with a thick black line. FAT = frontal aslant tract; Ins = su-

perior central insula; Put = putamen; UF = uncinate fasciculus.

Table 4 Results from the mediation and correlation

analyses

BA45 BA44 vPMC M1

Mediation analyses (Model 4)

TE –0.281 –0.436 –0.449 –0.520

DE –0.010 –0.090 –0.073 –0.142

IE –0.272 –0.345 –0.376 –0.378

IE/TE 0.968 0.791 0.837 0.727

Correlation analyses

aAF 0.450 0.627 0.672 0.755

The upper part of the table indicates the (standardized) regression coefficients for the

direct and indirect effects (DE and IE) of lesion load in each of four left posterior infer-

ior frontal cortical regions on speech production (i.e. spoken picture description

scores). The indirect effect corresponds to the part of the total effect (TE) for that

particular region that is mediated by co-occurring aAF damage: e.g. (IE/TE) �
100 = 97% for BA45. The total and indirect effects for each of the four left posterior

inferior frontal cortical regions examined were statistically significant. In contrast,

none of the direct effects were statistically significant. The lower part of the table indi-

cates the degree to which greater damage to aAF co-occurred with greater damage to

each left posterior inferior frontal cortical region.
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and long segments of the arcuate fasciculus, as well as other

crossing white matter tracts.

Previous studies were not able to tease apart the impact of

damage to Broca’s area and surrounding areas because focal

damage to Broca’s area is rare post-stroke; particularly in

the context of ischaemic injuries (Mah et al., 2014; Sperber

and Karnath, 2017), which are by far the most prevalent

type of stroke (�80%; James et al., 2018). Indeed, none of

the patients with Broca’s area damage in our sample com-

pletely preserved all neighbouring brain regions. We over-

came this challenge because (i) we had access to data from a

large cohort that included patients who differed in the de-

gree of damage to neighbouring left frontal lobe regions;

and (ii) although damage to Broca’s area typically co-occurs

with damage to these neighbouring areas, damage to neigh-

bouring areas can occur without damage to Broca’s area.

These stereotyped vascular lesions arise because Broca’s area

is fed by the precentral branch of the middle cerebral artery

where a blockage proximal to its origin in the superior

trunk, or at the level of the superior trunk, impacts upon

neighbouring regions such as premotor and primary motor

cortices (Gibo et al., 1981; Kahilogullari et al., 2012). In

contrast, a blockage in the precentral branch distal from its

origin, or in the adjacent central branch, is expected to spare

Broca’s area, while affecting premotor/motor cortex and

other neighbouring regions (Gibo et al., 1981; Kahilogullari

et al., 2012).

Below, we consider prior evidence for the role of BA44

and BA45 (i.e. Broca’s area) in speech processing before

turning to a discussion of why white matter damage, above

the insula, in the vicinity of aAF is important for explaining

long-term speech production outcome after stroke.

The role of BA44 and BA45 in
speech production in the
neurologically-intact brain

BA44 and BA45 (together known as Broca’s area) still oc-

cupy a prominent position in highly influential dual-stream

models of the speech network (Hickok and Poeppel, 2007;

Rauschecker and Scott, 2009; Gow, 2012; Friederici and

Gierhan, 2013) and the function attributed to these areas is

continually being refined (Papoutsi et al., 2009; Flinker

et al., 2015; Long et al., 2016; Mugler et al., 2018). We are

not refuting the role that Broca’s area has been shown to

play in speech production in the undamaged brain, but we

are challenging the long-held assumption that damage to

Broca’s area contributes to long-term speech production

impairments after stroke. Below, we briefly review prior

findings regarding the role of BA44 and BA45 in normal

speech production and the evidence we have provided that

the prior association between Broca’s area damage and per-

sistent speech production impairments can be accounted for

by co-occurring damage to white matter, above the insula,

in the vicinity of aAF.

According to previous transcranial magnetic stimulation

and functional MRI studies of neurologically-intact subjects,

BA44 and BA45 can be dissociated based on their function,

with BA44 being more important for phonological process-

ing (i.e. related to the encoding or decoding of the sound

structure of words) and BA45 being more important for se-

mantic processing (i.e. related to the meaning of words)

(Poldrack et al., 1999; McDermott et al., 2003; Gitelman

et al., 2005; Gough et al., 2005; Klaus and Hartwigsen,

2019). For instance, BA44—or pars opercularis—has been

shown to play a key role in phonological tasks that involve

monitoring, discriminating or sequencing speech sounds

(Zatorre et al., 1992, 1996; Demonet et al., 1996; Poldrack

et al., 1999; Burton et al., 2000). In contrast, BA45—or

pars triangularis—has been associated with tasks focusing

on lexical-semantic processing such as category member

judgement or generation (Poldrack et al., 1999; Klaus and

Hartwigsen, 2019). The frontal region associated with

speech articulation in functional imaging studies of the

neurologically-intact brain is, by contrast, the more posterior

precentral cortex (Wise et al., 1999; Price, 2012).

Given the importance of BA44 and BA45 for phonological

and semantic processing abilities, it would not be surprising

if damage to these regions impaired speech production. On

the other hand, it is also possible that speech production

could be maintained or recovered if the function of BA44

and BA45 could be supported by other brain regions. In

these circumstances, we might find that damage to BA44

and/or BA45 would have a transient effect on speech pro-

duction abilities that weakens with time as other areas start

to compensate (Hypothesis A). Alternatively, the type of

processing that is important for phonologically and seman-

tically demanding laboratory tasks may not be as important

for ‘naturalistic’ speech production as required for our spo-

ken picture description task (Hypothesis B).

Table 5 Results from the ANCOVA factoring out the influence of insula and putamen damage

F df P-value

Main effect 4.185 2, 17 0.033

Adjusted means Mean difference P-value

BA44 versus aAF 62.8 versus 55.2 7.68 0.028

BA44 + aAF versus aAF 55.8 versus 55.2 0.60 0.848
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Support for Hypothesis A comes from a study by Ochfeld

et al. (2010) who reported that ischaemia in Broca’s area

resulted in transient (first 48 h), rather than persistent (46

months), speech production impairments. However, this evi-

dence needs to be qualified by the fact that Ochfeld et al.

did not control for the effect of co-occurring damage to sur-

rounding areas. Therefore, it is plausible that the transient

speech production impairments observed in their sample of

patients were not the direct consequence of damage to

Broca’s area. Support for Hypothesis B comes from a study

by Tate et al. (2014) who showed that direct electrical

stimulation of BA44 and BA45 in patients undergoing

awake surgery for glioma removal disrupted phonological

and semantic skills but rarely translated into a lack of speech

output. As most of our patients (123 of 134 = 92%) were

tested in the chronic phase after stroke (46 months), future

cross-sectional/longitudinal studies are required to establish

whether Broca’s area damage contributes to early speech

production impairments (i.e. within the first few months

post-stroke) when the degree of damage to surrounding

brain regions (particularly aAF) is accounted for.

The importance of aAF for speech
production cannot be explained by
disconnection of Broca’s area

Our findings agree with prior evidence that white matter

damage above the insula (Supplementary Fig. 4) can cause

long-lasting speech production impairments. The white mat-

ter pathway most likely to be affected is the anterior part of

the arcuate fasciculus, according to a normative DTI-based

atlas of human brain connections (Catani and Thiebaut de

Schotten, 2008; Thiebaut de Schotten et al., 2011) and post-

mortem fibre dissection studies (Martino et al., 2013).

However, because of how closely the anterior and long seg-

ments of the arcuate fasciculus run in the fronto-parietal

white matter above the insula, we cannot distinguish

whether long-lasting speech production impairments were

exclusively caused by damage to one of these segments or by

a combination of damage to both these segments (as well as

plausibly other crossing white matter tracts in this region).

Appreciating the importance of white matter, above the in-

sula, in the vicinity of aAF for speech production is not

novel (Marchina et al., 2011; Fridriksson et al., 2013;

Kümmerer et al., 2013). The tracts in this region are some-

times claimed to be part of the so-called dorsal stream for

speech processing (Parker et al., 2005), and connect multiple

regions implicated in speech production such as the pars

opercularis, ventral precentral gyrus, supramarginal gyrus

and posterior superior temporal gyrus (Catani et al., 2005;

Martino et al., 2013; Bernard et al., 2019). Thus, these dor-

sally located white matter tracts are thought to enable bidir-

ectional mappings between sensory speech processing in

parieto-temporal cortex and motor speech processing in pos-

terior inferior frontal cortex, during overt and covert pro-

duction of non-words, words and sentences (Saur et al.,

2008; Geva et al., 2011; Rolheiser et al., 2011; Wilson

et al., 2011; Kümmerer et al., 2013; Fridriksson et al., 2016;

Ivanova et al., 2016; Lorca-Puls et al., 2017). Indeed, persist-

ent speech production impairments as a consequence of

stroke damage to aAF have been reported in prior studies

that did (Marchina et al., 2011) and did not collect

(Fridriksson et al., 2013) DTI data to quantify structural ab-

normality in white matter pathways. Speech production

impairments have also been induced after aAF disruption by

means of direct electrical stimulation (van Geemen et al.,
2014). In contrast to our work, however, these studies did

not rule out the possibility that the effect of damage/disrup-

tion to aAF on speech production could be explained in

terms of a disconnection of Broca’s area.

Our study extends this literature by revealing that the ef-

fect of damage to aAF on long-term speech production out-

come cannot logically be explained in terms of a

disconnection of Broca’s area. Specifically, Broca’s area dis-

connection cannot explain why patients with direct damage

to Broca’s area and relative sparing of aAF had better speech

production abilities than patients with damage to aAF and

relative sparing of Broca’s area. In addition, our Bayesian

analysis showed that Broca’s area damage did not contribute

to long-term speech production outcome after factoring out

co-occurring aAF damage (i.e. significantly stronger evidence

in favour of the null than the alternative), which is in accord

with the results from Tate et al. (2014) where direct electric-

al stimulation to Broca’s area rarely caused speech arrest.

Taken together, our findings suggest that if initial speech

production impairments are observed after damage to

Broca’s area, with relative sparing of aAF, they are likely to

resolve. In contrast, relatively circumscribed white matter

damage, above the insula, in the vicinity of aAF is likely to

have a long-lasting detrimental effect that may be the conse-

quence of disrupted functional integration among the mul-

tiple regions in inferior frontal, inferior parietal and superior

temporal cortices involved in the sensorimotor control of

speech production (Golfinopoulos et al., 2010; Schwartz

et al., 2012; Mirman et al., 2015; Fridriksson et al., 2016),

irrespective of whether or not Broca’s area has been discon-

nected. Future longitudinal studies are needed to test these

hypotheses.

The association between persistent speech production

impairments and white matter damage aligns well with prior

evidence suggesting that white matter damage poses a major

constraint on brain plasticity (Duffau, 2014; Herbet et al.,
2016; Griffis et al., 2019). One explanation for this is that

white matter can act as a bottle neck for multiple processing

tracts from multiple neural networks, all of which are

affected when the bottle neck is damaged, thereby limiting

resources for recovery (Griffis et al., 2017).

Our findings support prior conclusions that white matter,

above the insula, in the vicinity of aAF is important for

speech production (Fridriksson et al., 2013), but we are not

claiming that this is the only brain area where damage

impairs speech production. Nor are we making any claims

about which cortical areas may be indirectly affected by
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damage to this region or the cognitive functions served by

this region. It may be the case that white matter, above the

insula, in the vicinity of aAF is crucial for multiple function-

ally distinct brain networks. For example, we found that,

compared to Broca’s area damage, damage to our aAF re-

gion of interest reduced the quality and quantity of speech

output in terms of its syntactic variety, grammatical well-

formedness, speed and appropriate information carrying

words.

Limitations and future directions

All nine of our regions of interest were selected because they

have been associated with speech production in previous le-

sion, direct electrical stimulation and/or functional MRI

studies (Table 1). Indeed, when these regions (e.g. BA44)

were considered in isolation, there was a significant associ-

ation between damage and persistent speech production

impairments. However, when these regions were considered

in combination, the only significant predictor of long-term

speech production outcome was the degree of damage to

white matter, above the insula, in the vicinity of aAF.

Moreover, when the effect of co-occurring damage to our

aAF region of interest was controlled for, the relationship

between damage and persistent speech production impair-

ments was no longer significant for any other region. These

results have a number of implications. With respect to prior

(and future) lesion studies, they highlight the importance of

examining focal damage to regions of interest or controlling

for co-occurring damage to aAF. With respect to prior func-

tional MRI and direct electrical stimulation studies, they sug-

gest that the function of our regions of interest, with the

exception of aAF, can be compensated for by other undam-

aged regions (e.g. after functional reorganization; Young

et al., 2020). With respect to our own findings, a number of

points are worth considering further.

First, although both anatomical and functional considera-

tions were taken into account when defining our regions of

interest, it remains possible that, within each of our regions,

there may be subparts that are required for speech produc-

tion and subparts that are not required for speech produc-

tion. In this hypothetical case, the impact of damage on

speech production will depend on which subpart, but not

how much, of the region has been affected. Estimating the

effect of damage only in terms of lesion load in atlas-based

regions of interest may therefore lead to false negative

results. Future studies will need to examine the impact of

damage to functionally defined subparts of our current

regions of interest. For grey matter regions, the critical locus

of damage could be defined as the subparts that are normal-

ly activated during speech production. For white matter

regions, the critical locus of damage could be defined as the

point along the length of the tract where most of the fibres

have been severed (i.e. tract disconnections as opposed to

tract lesion load). Previously, we proposed a method for esti-

mating whether a tract has been severed (Hope et al., 2016;

see also Griffis et al., 2019 for a related approach) and

demonstrated that tract disconnection metrics were generally

more sensitive than tract lesion load per se. In the current

study, we circumvented the challenges associated with using

lesion load in atlas-based regions of interest by including

large numbers of patients with varying degrees of damage to

our regions of interest. This maximizes the available vari-

ance for analysis, ensuring sufficient statistical power to de-

tect lesion effects as reflected by the fact that a significant

relationship between lesion load and speech production

impairments was found when the regions were considered in

isolation.

Second, white matter lesions are likely to damage fibres

with a range of different cortical projections. We can there-

fore not be entirely sure which cortical areas are discon-

nected as a result of damage to our aAF region of interest.

The current study, like many others (Fridriksson et al.,

2013; Basilakos et al., 2014), attempted to constrain this

problem by using regions with a high probability of being

the tract of interest according to normative atlases of human

brain connections (Catani et al., 2012b; Eickhoff et al.,

2018). This ensured that the regions were representative of

the general population, minimizing inter-subject variability

without completely removing it. For studies that aim to pre-

dict outcome in new patients, greater appreciation of vari-

ability in normal and damaged white matter tracts will be

required. This could be achieved with multimodal data

from, for example, diffusion tensor imaging (DTI) and direct

electrical stimulation studies. In addition, the availability of

DTI data may be useful for determining the integrity of spe-

cific white matter tracts, particularly in the case of haemor-

rhagic strokes where bleeding may disrupt, but not

necessarily sever, the white matter fibres running through

the affected brain area. Dissociating the effect of damage to

the anterior segment of the arcuate fasciculus from that to

the long segment of the arcuate fasciculus is, however, an

issue that DTI data would not help to resolve given the fre-

quency with which these two segments are concurrently

damaged as a consequence of stroke (at least in our dataset).

Third, there are other white matter tracts where combined

stroke damage has previously been associated with persistent

non-fluent speech production. These fibre pathways are

more deeply situated (i.e. adjacent to the lateral ventricle)

than the ones studied here and comprise the medial subcal-

losal fasciculus and periventricular white matter (Naeser

et al., 1989; Naeser and Palumbo, 1994). Currently, the def-

inition of the course of these tracts and their cortical termi-

nations are not yet available in any of the published

tractography-based atlases of human brain connections (see

Forkel et al., 2014 for relevant discussion). Further research

is therefore needed to (i) precisely define the nature, course

and termination of these white matter tracts; (ii) assess the

degree to which these tracts are damaged in patients with

lesions to our regions of interest (Broca’s area and aAF); and

(iii) establish whether damage to these tracts results in per-

sistent speech production impairments when our aAF region

of interest is preserved.
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Finally, we note that future longitudinal structural and

functional neuroimaging studies are required to investigate

how neural systems for speech production change during re-

covery in stroke patients with relatively circumscribed dam-

age to aAF or Broca’s area. This endeavour is likely to be

extremely challenging and may not even be feasible given

that stroke lesions only very rarely affect grey matter in the

absence of co-occurring white matter damage and vice versa

(as we have shown here).

Conclusion
Paul Broca’s seminal work associated persistent speech pro-

duction impairments with damage to the third convolution

of the left frontal lobe (i.e. inferior frontal gyrus, particularly

its posterior half). However, the lesion sites observed in Paul

Broca’s two historic cases (Leborgne and Lelong) involved

other cortical and subcortical areas neighbouring the left

posterior inferior frontal gyrus, including the white matter

underlying BA44 and BA45 (Dronkers et al., 2007). This

along with other findings (Mohr et al., 1978) led to the con-

clusion that long-term speech production impairments are

the consequence of co-occurring damage to cortical and sub-

cortical regions in and around Broca’s area. Our results indi-

cate that damage to BA44 and BA45 does not contribute to

long-term speech production impairments after left frontal

lobe strokes. As well as challenging the long established as-

sociation of Broca’s area damage with persistent speech pro-

duction impairments, our findings suggest that: (i) the degree

of co-occurring damage to aAF should be controlled in fu-

ture lesion studies of left frontal lobe function; and (ii) the

association of Broca’s area damage with short-term speech

production impairments (Ochfeld et al., 2010) should be re-

evaluated after controlling for damage to aAF.
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