3 research outputs found

    Physiopathologie de l'amibiase intestinale

    No full text
    PARIS-BIUP (751062107) / SudocSudocFranceF

    In Entamoeba histolytica, a BspA family protein is required for chemotaxis toward tumour necrosis factor

    No full text
    Background: [i]Entamoeba histolytica[/i] cell migration is essential for the development of human amoebiasis (an infectious disease characterized by tissue invasion and destruction). The tissue inflammation associated with tumour necrosis factor (TNF) secretion by host cells is a well-documented feature of amoebiasis. Tumour necrosis factor is a chemoattractant for E. histolytica, and the parasite may have a TNF receptor at its cell surface. Methods: confocal microscopy, RNA Sequencing, bioinformatics, RNA antisense techniques and histological analysis of human colon explants were used to characterize the interplay between TNF and E. histolytica. Results: an antibody against human TNF receptor 1 (TNFR1) stained the E. histolytica trophozoite surface and (on immunoblots) binds to a 150-kDa protein. Proteome screening with the TNFR1 sequence revealed a BspA family protein in E. histolytica that carries a TNFR signature domain and six leucine-rich repeats (named here as “cell surface protein”, CSP, in view of its cellular location). Cell surface protein shares structural homologies with Toll-Like receptors, colocalizes with TNF and is internalized in TNF-containing vesicles. Reduction of cellular CSP levels abolished chemotaxis toward TNF and blocked parasite invasion of human colon. Conclusions: there is a clear link between TNF chemotaxis, CSP and pathogenesis

    High-Frequency Neuronavigated rTMS in Auditory Verbal Hallucinations: A Pilot Double-Blind Controlled Study in Patients With Schizophrenia

    No full text
    International audienceIntroduction: Despite extensive testing, the efficacy of low-frequency (1 Hz) repetitive transcranial magnetic stimulation (rTMS) of temporo-parietal targets for the treatment of auditory verbal hallucinations (AVH) in patients with schizophrenia is still controversial, but promising results have been reported with both high-frequency and neuronavigated rTMS. Here, we report a double-blind sham-controlled study to assess the efficacy of high-frequency (20 Hz) rTMS applied over a precise anatomical site in the left temporal region using neuronavigation. Methods: Fifty-nine of 74 randomized patients with schizophrenia or schizoaffective disorders (DSM-IV R) were treated with rTMS or sham treatment and fully evaluated over 4 weeks. The rTMS target was determined by morphological MRI at the crossing between the projection of the ascending branch of the left lateral sulcus and the superior temporal sulcus (STS). Results: The primary outcome was response to treatment, defined as a 30% decrease of the Auditory Hallucinations Rating Scale (AHRS) frequency item, observed at 2 successive evaluations. While there was no difference in primary outcome between the treatment groups, the percentages of patients showing a decrease of more than 30% of AHRS score (secondary outcome) did differ between the active (34.6%) and sham groups (9.1%) (P = .016) at day 14. Discussion: This controlled study reports negative results on the primary outcome but demonstrates a transient effect of 20 Hz rTMS guided by neuronavigation and targeted on an accurate anatomical site for the treatment of AVHs in schizophrenia patients
    corecore