52 research outputs found

    Plant genotype influences aquatic-terrestrial ecosystem linkages through timing and composition of insect emergence

    Get PDF
    Terrestrial leaf litter provides aquatic insects with an energy source and habitat structure,and species differences in litter can influence aquatic insect emergence. Emerging insects also provide energy to riparian predators. We hypothesized that plant genetics would influence the composition and timing of emerging insect communities among individual genotypes of Populus angustifolia varying in litter traits. We also compared the composition and timing of emerging insect communities on litter from mixed genotypes of three cross types of a hybridizing cottonwood complex: P. angustifolia, P. fremontii, and their F1 hybrids. Using litter harvested from an experimental common garden, we measured emerging insect community composition, abundance, and production for 12 weeks in large litter packs affixed with emergence traps. Five major findings emerged. (1) In support of the genetic similarity hypothesis, we found that, among P. angustifolia tree genotypes, litter from more closely related genotypes had more similar litter thickness, nitrogen concentrations, decomposition rates, and emerging insect communities. (2) Genetic similarity was not correlated with other litter traits, although the litter fungal community was a strong predictor of emerging insect communities. (3) Litter decomposition rate, which was the strongest predictor of emerging aquatic insect communities, was influenced by litter thickness, litter N, and the litter fungal community. (4) In contrast to strong community composition differences among P. angustifolia genotypes, differences in community composition between P. fremontii and P. angustifolia were only marginally significant, and communities on F1 hybrids were indistinguishable from P. angustifolia despite genetic and litter trait differences. (5) Mixed litter packs muted the genetic effects observed in litter packs con- sisting of single genotypes. These results demonstrate that the genetic structure of riparian forests can affect the composition and timing of aquatic insect emergence. Because many riparian trees are clonal, including P. angustifolia, large clone size is likely to result in patches of genetically structured leaf litter that may influence the timing and composition of insect emergence within watersheds. Riparian restoration efforts incorporating different tree genotypes could also influence the biodiversity of emerging aquatic insects. Our work illustrates the importance of plant genes for community and ecosystem processes in riparian corridors

    Evidence That A Late-Emerging Population Of Trunk Neural Crest Cells Forms The Plastron Bones In The Turtle Trachemys Scripta

    No full text
    The origin of the turtle plastron is not known, but these nine bones have been homologized to the exoskeletal components of the clavicles, the interclavicular bone, and gastralia. Earlier evidence from our laboratory showed that the bone-forming cells of the plastron were positive for HNK-1 and PDGFR alpha, two markers of the skeletogenic neural crest. This study looks at the embryonic origin of these plastron-forming cells. We show that the HNK-1(+) cells are also positive for p75 and FoxD3, confirming their neural crest identity, and that they originate from the dorsal neural tube of stage 17 turtle embryos, several days after the original wave of neural crest cells have migrated and differentiated. DiI studies show that these are migratory cells, and they can be observed in the lateral regions of the embryo and can be seen forming intramembranous bone in the ventral (plastron) regions. Before migrating ventrally, these late-emerging neural crest cells reside for over a week in a carapacial staging area above the neural tube and vertebrae. It is speculated that this staging area is where they lose the inability to form skeletal cells
    corecore