72 research outputs found

    Sodium channel slow inactivation interferes with open channel block

    Get PDF
    Mutations in the voltage-gated sodium channel Nav1.7 are linked to inherited pain syndromes such as erythromelalgia (IEM) and paroxysmal extreme pain disorder (PEPD). PEPD mutations impair Nav1.7 fast inactivation and increase persistent currents. PEPD mutations also increase resurgent currents, which involve the voltage-dependent release of an open channel blocker. In contrast, IEM mutations, whenever tested, leave resurgent currents unchanged. Accordingly, the IEM deletion mutation L955 (ΔL955) fails to produce resurgent currents despite enhanced persistent currents, which have hitherto been considered a prerequisite for resurgent currents. Additionally, ΔL955 exhibits a prominent enhancement of slow inactivation (SI). We introduced mutations into Nav1.7 and Nav1.6 that either enhance or impair SI in order to investigate their effects on resurgent currents. Our results show that enhanced SI is accompanied by impaired resurgent currents, which suggests that SI may interfere with open-channel block

    Mutagenesis of the NaChBac sodium channel discloses a functional role for a conserved S6 asparagine

    Get PDF
    Asparagine is conserved in the S6 transmembrane segments of all voltage-gated sodium, calcium, and TRP channels identified to date. A broad spectrum of channelopathies including cardiac arrhythmias, epilepsy, muscle diseases, and pain disorders is associated with its mutation. To investigate its effects on sodium channel functional properties, we mutated the simple prokaryotic sodium channel NaChBac. Electrophysiological characterization of the N225D mutant reveals that this conservative substitution shifts the voltage-dependence of inactivation by 25 mV to more hyperpolarized potentials. The mutant also displays greater thermostability, as determined by synchrotron radiation circular dichroism spectroscopy studies of purified channels. Based on our analyses of high-resolution structures of NaChBac homologues, we suggest that the side-chain amine group of asparagine 225 forms one or more hydrogen bonds with different channel elements and that these interactions are important for normal channel function. The N225D mutation eliminates these hydrogen bonds and the structural consequences involve an enhanced channel inactivation

    For localized prostate cancer, does technology equal progress?

    No full text
    Recent evolution of prostate cancer treatment reflects technological arms races driven by economic incentives rather than high-quality evidence - as exemplified by proton-beam radiation, recently found markedly inferior to far less-expensive alternatives. Another study found promise for focal treatment, but much research is required before this could become a standard option. © 2012 Macmillan Publishers Limited. All rights reserved

    New types of radiotherapy improve cancer outcome but at what cost?

    No full text
    New and very expensive forms of radiotherapy, such as intensity-modulated radiation therapy and proton therapy, have taken over the localized prostate cancer market. But is there enough evidence to justify their increased utilization and if so, how can we possibly afford them

    Comparison of Gating Properties and Use-Dependent Block of Nav1.5 and Nav1.7 Channels by Anti-Arrhythmics Mexiletine and Lidocaine

    No full text
    Mexiletine and lidocaine are widely used class IB anti-arrhythmic drugs that are considered to act by blocking voltage-gated open sodium currents for treatment of ventricular arrhythmias and relief of pain. To gain mechanistic insights into action of anti-arrhythmics, we characterized biophysical properties of Na(v)1.5 and Na(v)1.7 channels stably expressed in HEK293 cells and compared their use-dependent block in response to mexiletine and lidocaine using whole-cell patch clamp recordings. While the voltage-dependent activation of Na(v)1.5 or Na(v)1.7 was not affected by mexiletine and lidocaine, the steady-state fast and slow inactivation of Na(v)1.5 and Na(v)1.7 were significantly shifted to hyperpolarized direction by either mexiletine or lidocaine in dose-dependent manner. Both mexiletine and lidocaine enhanced the slow component of closed-state inactivation, with mexiletine exerting stronger inhibition on either Na(v)1.5 or Na(v)1.7. The recovery from inactivation of Na(v)1.5 or Na(v)1.7 was significantly prolonged by mexiletine compared to lidocaine. Furthermore, mexiletine displayed a pronounced and prominent use-dependent inhibition of Na(v)1.5 than lidocaine, but not Na(v)1.7 channels. Taken together, our findings demonstrate differential responses to blockade by mexiletine and lidocaine that preferentially affect the gating of Na(v)1.5, as compared to Na(v)1.7; and mexiletine exhibits stronger use-dependent block of Na(v)1.5. The differential gating properties of Na(v)1.5 and Na(v)1.7 in response to mexiletine and lidocaine may help explain the drug effectiveness and advance in new designs of safe and specific sodium channel blockers for treatment of cardiac arrhythmia or pain
    corecore