102 research outputs found

    The Berkeley sample of Type II supernovae: BVRI light curves and spectroscopy of 55 SNe II

    Get PDF
    In this work, BVRI light curves of 55 Type II supernovae (SNe II) from the Lick Observatory Supernova Search programme obtained with the Katzman Automatic Imaging Telescope and the 1 m Nickel telescope from 2006 to 2018 are presented. Additionally, more than 150 spectra gathered with the 3 m Shane telescope are published. We conduct an analyse of the peak absolute magnitudes, decline rates, and time durations of different phases of the light and colour curves. Typically, our light curves are sampled with a median cadence of 5.5 d for a total of 5093 photometric points. In average, V-band plateau declines with a rate of 1.29 mag (100 d)−1, which is consistent with previously published samples. For each band, the plateau slope correlates with the plateau length and the absolute peak magnitude: SNe II with steeper decline have shorter plateau duration and are brighter. A time-evolution analysis of spectral lines in term of velocities and pseudo-equivalent widths is also presented in this paper. Our spectroscopic sample ranges between 1 and 200 d post-explosion and has a median ejecta expansion velocity at 50 d post-explosion of 6500 km s−1 (H α line) and a standard dispersion of 2000 km s−1. Nebular spectra are in good agreement with theoretical models using a progenitor star having a mass <16M⊙. All the data are available to the community and will help to understand SN II diversity better, and therefore to improve their utility as cosmological distance indicators

    HPV16 oncogene expression levels during early cervical carcinogenesis are determined by the balance of epigenetic chromatin modifications at the integrated virus genome.

    Get PDF
    In cervical squamous cell carcinomas, high-risk human papillomavirus (HRHPV) DNA is usually integrated into host chromosomes. Multiple integration events are thought to be present within the cells of a polyclonal premalignant lesion and the features that underpin clonal selection of one particular integrant remain poorly understood. We previously used the W12 model system to generate a panel of cervical keratinocyte clones, derived from cells of a low-grade premalignant lesion naturally infected with the major HRHPV type, HPV16. The cells were isolated regardless of their selective advantage and differed only by the site of HPV16 integration into the host genome. We used this resource to test the hypothesis that levels of HPV16 E6/E7 oncogene expression in premalignant cells are regulated epigenetically. We performed a comprehensive analysis of the epigenetic landscape of the integrated HPV16 DNA in selected clones, in which levels of virus oncogene expression per DNA template varied ~6.6-fold. Across the cells examined, higher levels of virus expression per template were associated with more open chromatin at the HPV16 long control region, together with greater loading of chromatin remodelling enzymes and lower nucleosome occupancy. There were higher levels of histone post-translational modification hallmarks of transcriptionally active chromatin and lower levels of repressive hallmarks. There was greater abundance of the active/elongating form of the RNA polymerase-II enzyme (RNAPII-Ser2P), together with CDK9, the component of positive transcription elongation factor b complex responsible for Ser2 phosphorylation. The changes observed were functionally significant, as cells with higher HPV16 expression per template showed greater sensitivity to depletion and/or inhibition of histone acetyltransferases and CDK9 and less sensitivity to histone deacetylase inhibition. We conclude that virus gene expression per template following HPV16 integration is determined through multiple layers of epigenetic regulation, which are likely to contribute to selection of individual cells during cervical carcinogenesis.This work was supported by Cancer Research UK (Programme Grant A13080); the Medical Research Council; The Pathological Society of Great Britain and Ireland (E.L.A.K.); and the Agency for Science, Technology and Research, Singapore (Q.Y.A).This is the final version of the article. It first appeared from Nature Publishing Group via http://dx.doi.org/10.1038/onc.2016.

    Persistent left superior vena cava: Review of the literature, clinical implications, and relevance of alterations in thoracic central venous anatomy as pertaining to the general principles of central venous access device placement and venography in cancer patients

    Get PDF
    Persistent left superior vena cava (PLSVC) represents the most common congenital venous anomaly of the thoracic systemic venous return, occurring in 0.3% to 0.5% of individuals in the general population, and in up to 12% of individuals with other documented congential heart abnormalities. In this regard, there is very little in the literature that specifically addresses the potential importance of the incidental finding of PLSVC to surgeons, interventional radiologists, and other physicians actively involved in central venous access device placement in cancer patients. In the current review, we have attempted to comprehensively evaluate the available literature regarding PLSVC. Additionally, we have discussed the clinical implications and relevance of such congenital aberrancies, as well as of treatment-induced or disease-induced alterations in the anatomy of the thoracic central venous system, as they pertain to the general principles of successful placement of central venous access devices in cancer patients. Specifically regarding PLSVC, it is critical to recognize its presence during attempted central venous access device placement and to fully characterize the pattern of cardiac venous return (i.e., to the right atrium or to the left atrium) in any patient suspected of PLSVC prior to initiation of use of their central venous access device

    The Emergence of Emotions

    Get PDF
    Emotion is conscious experience. It is the affective aspect of consciousness. Emotion arises from sensory stimulation and is typically accompanied by physiological and behavioral changes in the body. Hence an emotion is a complex reaction pattern consisting of three components: a physiological component, a behavioral component, and an experiential (conscious) component. The reactions making up an emotion determine what the emotion will be recognized as. Three processes are involved in generating an emotion: (1) identification of the emotional significance of a sensory stimulus, (2) production of an affective state (emotion), and (3) regulation of the affective state. Two opposing systems in the brain (the reward and punishment systems) establish an affective value or valence (stimulus-reinforcement association) for sensory stimulation. This is process (1), the first step in the generation of an emotion. Development of stimulus-reinforcement associations (affective valence) serves as the basis for emotion expression (process 2), conditioned emotion learning acquisition and expression, memory consolidation, reinforcement-expectations, decision-making, coping responses, and social behavior. The amygdala is critical for the representation of stimulus-reinforcement associations (both reward and punishment-based) for these functions. Three distinct and separate architectural and functional areas of the prefrontal cortex (dorsolateral prefrontal cortex, orbitofrontal cortex, anterior cingulate cortex) are involved in the regulation of emotion (process 3). The regulation of emotion by the prefrontal cortex consists of a positive feedback interaction between the prefrontal cortex and the inferior parietal cortex resulting in the nonlinear emergence of emotion. This positive feedback and nonlinear emergence represents a type of working memory (focal attention) by which perception is reorganized and rerepresented, becoming explicit, functional, and conscious. The explicit emotion states arising may be involved in the production of voluntary new or novel intentional (adaptive) behavior, especially social behavior
    • 

    corecore