16 research outputs found

    Mechanisms Underlying Insulin Deficiency-Induced Acceleration of β-Amyloidosis in a Mouse Model of Alzheimer's Disease

    Get PDF
    Although evidence is accumulating that diabetes mellitus is an important risk factor for sporadic Alzheimer's disease (AD), the mechanisms by which defects in insulin signaling may lead to the acceleration of AD progression remain unclear. In this study, we applied streptozotocin (STZ) to induce experimental diabetes in AD transgenic mice (5XFAD model) and investigated how insulin deficiency affects the β-amyloidogenic processing of amyloid precursor protein (APP). Two and half months after 5XFAD mice were treated with STZ (90 mg/kg, i.p., once daily for two consecutive days), they showed significant reductions in brain insulin levels without changes in insulin receptor expression. Concentrations of cerebral amyloid-β peptides (Aβ40 and Aβ42) were significantly increased in STZ-treated 5XFAD mice as compared with vehicle-treated 5XFAD controls. Importantly, STZ-induced insulin deficiency upregulated levels of both β-site APP cleaving enzyme 1 (BACE1) and full-length APP in 5XFAD mouse brains, which was accompanied by dramatic elevations in the β-cleaved C-terminal fragment (C99). Interestingly, BACE1 mRNA levels were not affected, whereas phosphorylation of the translation initiation factor eIF2α, a mechanism proposed to mediate the post-transcriptional upregulation of BACE1, was significantly elevated in STZ-treated 5XFAD mice. Meanwhile, levels of GGA3, an adapter protein responsible for sorting BACE1 to lysosomal degradation, are indistinguishable between STZ- and vehicle-treated 5XFAD mice. Moreover, STZ treatments did not affect levels of Aβ-degrading enzymes such as neprilysin and insulin-degrading enzyme (IDE) in 5XFAD brains. Taken together, our findings provide a mechanistic foundation for a link between diabetes and AD by demonstrating that insulin deficiency may change APP processing to favor β-amyloidogenesis via the translational upregulation of BACE1 in combination with elevations in its substrate, APP

    Методология синтеза архитектуры программно-технического комплекса автоматизированной системы мониторинга обстановки

    Get PDF
    Предложен подход к проектированию архитектуры программно-технического комплекса автоматизированной системы мониторинга обстановки в реальном времени, основанный на классификации решаемых функциональных задач на основе методов кластерного анализа и выбранного множества признаков подобия. Разработанный подход позволяет из множества функций системы выделить подобные (по определенным признакам) и объединить их в архитектурные компоненты (унифицированные функциональные модули).Запропоновано підхід до проектування архітектури центру обробки інформації автоматизованої системи моніторингу середовища в реальному часі, що заснований на класифікації функціональних задач на підставі методів кластерного аналізу і обраної множини ознак схожості. Розроблений підхід дозволяє вибрати із множини функцій системи схожі (за певними ознаками) і поєднати їх в архітектурні компоненти (уніфіковані функціональні модулі).The approach to designing architecture of the information processing complex of the automated real time conditions monitoring system based on classification of functional tasks on the basis of methods of cluster analysis and the chosen set of similarity attributes is offered. The developed approach allows to allocate from a set of functions the systems similar (on certain attributes) and to unite them in architectural components (unified functional modules)

    Chronic treatment with the GLP1 analogue liraglutide increases cell proliferation and differentiation into neurons in an AD mouse model

    Get PDF
    Neurogenesis is a life long process, but the rate of cell proliferation and differentiation decreases with age. In Alzheimer's patients, along with age, the presence of Aβ in the brain inhibits this process by reducing stem cell proliferation and cell differentiation. GLP-1 is a growth factor that has neuroprotective properties. GLP1 receptors are present on neuronal progenitor cells, and the GLP-1 analogue liraglutide has been shown to increase cell proliferation in an Alzheimer's disease (AD) mouse model. Here we investigated acute and chronic effects of liraglutide on progenitor cell proliferation, neuroblast differentiation and their subsequent differentiation into neurons in wild type and APP/PS-1 mice at different ages. APP/PS1 and their littermate controls, aged 3, 6, 12, 15 months were injected acutely or chronically with 25 nmol/kg liraglutide. Acute treatment with liraglutide showed an increase in cell proliferation in APP/PS1 mice, but not in controls whereas chronic treatment increased cell proliferation at all ages (BrdU and Ki67 markers). Moreover, numbers of immature neurons (DCX) were increased in both acute and chronic treated animals at all ages. Most newly generated cells differentiated into mature neurons (NeuN marker). A significant increase was observed with chronically treated 6, 12, 15 month APP/PS1 and WT groups. These results demonstrate that liraglutide, which is currently on the market as a treatment for type 2 diabetes (VictozaTM), increases neurogenesis, which may have beneficial effects in neurodegenerative disorders like AD

    An Aggressive Solitary Fibrous Tumor with Evidence of Malignancy: A Rare Case Report

    No full text
    Solitary fibrous tumor (SFT) is rare mesenchymal neoplasm that has been originally and most often documented in the pleura. Recently, the ubiquitous nature of the SFT has been recognized with reports of involvement of numerous sites all over the body, i.e, upper respiratory tract, breast, somatic tissue, mediastinum, head, and neck, etc. The diagnosis of SFT still remains an enigma in our field. Furthermore, malignant SFT is extremely rare and only two cases have been reported in the oral cavity till date. Here, we present a rare case report of an aggressive solitary fibrous tumor which presented as a palatal mass and extended throughout the middle cranial fossa and exhibited features of malignancy

    Drug repositioning for Alzheimer's disease

    No full text
    Existing drugs for Alzheimer's disease provide symptomatic benefit for up to 12 months, but there are no approved disease-modifying therapies. Given the recent failures of various novel disease-modifying therapies in clinical trials, a complementary strategy based on repositioning drugs that are approved for other indications could be attractive. Indeed, a substantial body of preclinical work indicates that several classes of such drugs have potentially beneficial effects on Alzheimer's-like brain pathology, and for some drugs the evidence is also supported by epidemiological data or preliminary clinical trials. Here, we present a formal consensus evaluation of these opportunities, based on a systematic review of published literature. We highlight several compounds for which sufficient evidence is available to encourage further investigation to clarify an optimal dose and consider progression to clinical trials in patients with Alzheimer's disease
    corecore