38 research outputs found

    Anhydrobiosis and Freezing-Tolerance:Adaptations That Facilitate the Establishment of Panagrolaimus Nematodes in Polar Habitats

    Get PDF
    <div><p>Anhydrobiotic animals can survive the loss of both free and bound water from their cells. While in this state they are also resistant to freezing. This physiology adapts anhydrobiotes to harsh environments and it aids their dispersal. <i>Panagrolaimus davidi</i>, a bacterial feeding anhydrobiotic nematode isolated from Ross Island Antarctica, can survive intracellular ice formation when fully hydrated. A capacity to survive freezing while fully hydrated has also been observed in some other Antarctic nematodes. We experimentally determined the anhydrobiotic and freezing-tolerance phenotypes of 24 <i>Panagrolaimus</i> strains from tropical, temperate, continental and polar habitats and we analysed their phylogenetic relationships. We found that several other <i>Panagrolaimus</i> isolates can also survive freezing when fully hydrated and that tissue extracts from these freezing-tolerant nematodes can inhibit the growth of ice crystals. We show that <i>P. davidi</i> belongs to a clade of anhydrobiotic and freezing-tolerant panagrolaimids containing strains from temperate and continental regions and that <i>P. superbus</i>, an early colonizer at Surtsey island, Iceland after its volcanic formation, is closely related to a species from Pennsylvania, USA. Ancestral state reconstructions show that anhydrobiosis evolved deep in the phylogeny of <i>Panagrolaimus</i>. The early-diverging <i>Panagrolaimus</i> lineages are strongly anhydrobiotic but weakly freezing-tolerant, suggesting that freezing tolerance is most likely a derived trait. The common ancestors of the <i>davidi</i> and the <i>superbus</i> clades were anhydrobiotic and also possessed robust freezing tolerance, along with a capacity to inhibit the growth and recrystallization of ice crystals. Unlike other endemic Antarctic nematodes, the life history traits of <i>P. davidi</i> do not show evidence of an evolved response to polar conditions. Thus we suggest that the colonization of Antarctica by <i>P. davidi</i> and of Surtsey by <i>P. superbus</i> may be examples of recent “ecological fitting” of freezing-tolerant anhydrobiotic propagules to the respective abiotic conditions in Ross Island and Surtsey.</p></div

    The fire toxicity of polyurethane foams [Review]

    Get PDF
    Polyurethane is widely used, with its two major applications, soft furnishings and insulation, having low thermal inertia, and hence enhanced flammability. In addition to their flammability, polyurethanes form carbon monoxide, hydrogen cyanide and other toxic products on decomposition and combustion. The chemistry of polyurethane foams and their thermal decomposition are discussed in order to assess the relationship between the chemical and physical composition of the foam and the toxic products generated during their decomposition. The toxic product generation during flaming combustion of polyurethane foams is reviewed, in order to relate the yields of toxic products and the overall fire toxicity to the fire conditions. The methods of assessment of fire toxicity are outlined in order to understand how the fire toxicity of polyurethane foams may be quantified. In particular, the ventilation condition has a critical effect on the yield of the two major asphyxiants, carbon monoxide and hydrogen cyanid

    Molecular techniques for pathogen identification and fungus detection in the environment

    Get PDF
    Many species of fungi can cause disease in plants, animals and humans. Accurate and robust detection and quantification of fungi is essential for diagnosis, modeling and surveillance. Also direct detection of fungi enables a deeper understanding of natural microbial communities, particularly as a great many fungi are difficult or impossible to cultivate. In the last decade, effective amplification platforms, probe development and various quantitative PCR technologies have revolutionized research on fungal detection and identification. Examples of the latest technology in fungal detection and differentiation are discussed here

    Multifunctional Gold Nanocarriers for Cancer Theranostics - From Bench to Bedside and Back Again?

    Get PDF
    corecore