26 research outputs found
Role of Cancer Microenvironment in Metastasis: Focus on Colon Cancer
One person on three will receive a diagnostic of cancer during his life. About one third of them will die of the disease. In most cases, death will result from the formation of distal secondary sites called metastases. Several events that lead to cancer are under genetic control. In particular, cancer initiation is tightly associated with specific mutations that affect proto-oncogenes and tumour suppressor genes. These mutations lead to unrestrained growth of the primary neoplasm and a propensity to detach and to progress through the subsequent steps of metastatic dissemination. This process depends tightly on the surrounding microenvironment. In fact, several studies support the point that tumour development relies on a continuous cross-talk between cancer cells and their cellular and extracellular microenvironments. This signaling cross-talk is mediated by transmembrane receptors expressed on cancer cells and stromal cells. The aim of this manuscript is to review how the cancer microenvironment influences the journey of a metastatic cell taking liver invasion by colorectal cancer cells as a model
Divergent structural brain abnormalities between different genetic subtypes of children with Prader–Willi syndrome
Approach to chronic wound infections
Infection is the likeliest single cause of delayed healing in healing of chronic open wounds by secondary intention. If neglected it can progress from contamination to colonization and local infection through to systemic infection, sepsis and multiple organ dysfunction syndrome, and it can be life-threatening. Infection in chronic wounds is not as easy to define as in acute wounds, and is complicated by the presence of biofilms. There is, as yet, no diagnostic for biofilm presence, but it contributes to excessive inflammation – through excessive and prolonged stimulation of nitric oxide, inflammatory cytokines and free radicals – and activation of immune complexes and complement, leading to a delay in healing. Control of biofilm is a key part of chronic wound management. Maintenance debridement and use of topical antimicrobials (antiseptics) are more effective than antibiotics, which should be reserved for treating spreading local and systemic infection. The continuing rise of antimicrobial resistance to antibiotics should lead us to reserve their use for these indications, as no new effective antibiotics are in the research pipeline. Antiseptics are effective through many mechanisms of action, unlike antibiotics, which makes the development of resistance to them unlikely. There is little evidence to support the theoretical risk that antiseptics select resistant pathogens. However, the use of antiseptic dressings for preventing and managing biofilm and infection progression needs further research involving well-designed, randomized controlled trials
Clinical and Microbiological Aspects of Biofilm-Associated Surgical Site Infections
While microbial biofilms have been recognized as being ubiquitous in nature for the past 40 years, it has only been within the past 20 years that clinical practitioners have realized that biofilm play a significant role in both device-related and tissue-based infections. The global impact of surgical site infections (SSIs) is monumental and as many as 80 % of these infections may involve a microbial biofilm. Recent studies suggest that biofilm- producing organisms play a significant role in persistent skin and soft tissue wound infections in the postoperative surgical patient population. Biofilm, on an organizational level, allows bacteria to survive intrinsic and extrinsic defenses that would inactivate the dispersed (planktonic) bacteria. SSIs associated with biomedical implants are notoriously difficult to eradicate using antibiotic regimens that would typically be effective against the same bacteria growing under planktonic conditions. This biofilm-mediated phenomenon is characterized as antimicrobial recalcitrance, which is associated with the survival of a subset of cells including “persister” cells. The ideal method to manage a biofilm-mediated surgical site wound infection is to prevent it from occurring through rational use of antibiotic prophylaxis, adequate skin antisepsis prior to surgery and use of innovative in-situ irrigation procedures; together with antimicrobial suture technology in an effort to promote wound hygiene at the time of closure; once established, biofilm removal remains a significant clinical problem
