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Divergent structural brain abnormalities between
different genetic subtypes of children with
Prader–Willi syndrome
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Abstract

Background: Prader–Willi syndrome (PWS) is a complex neurogenetic disorder with symptoms that indicate not
only hypothalamic, but also a global, central nervous system (CNS) dysfunction. However, little is known about
developmental differences in brain structure in children with PWS. Thus, our aim was to investigate global brain
morphology in children with PWS, including the comparison between different genetic subtypes of PWS. In
addition, we performed exploratory cortical and subcortical focal analyses.

Methods: High resolution structural magnetic resonance images were acquired in 20 children with genetically
confirmed PWS (11 children carrying a deletion (DEL), 9 children with maternal uniparental disomy (mUPD)), and
compared with 11 age- and gender-matched typically developing siblings as controls. Brain morphology measures
were obtained using the FreeSurfer software suite.

Results: Both children with DEL and mUPD showed smaller brainstem volume, and a trend towards smaller cortical
surface area and white matter volume. Children with mUPD had enlarged lateral ventricles and larger cortical
cerebrospinal fluid (CSF) volume. Further, a trend towards increased cortical thickness was found in children with
mUPD. Children with DEL had a smaller cerebellum, and smaller cortical and subcortical grey matter volumes. Focal
analyses revealed smaller white matter volumes in left superior and bilateral inferior frontal gyri, right cingulate
cortex, and bilateral precuneus areas associated with the default mode network (DMN) in children with mUPD.

Conclusions: Children with PWS show signs of impaired brain growth. Those with mUPD show signs of early brain
atrophy. In contrast, children with DEL show signs of fundamentally arrested, although not deviant brain
development and presented few signs of cortical atrophy. Our results of global brain measurements suggest
divergent neurodevelopmental patterns in children with DEL and mUPD.
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Background
Prader–Willi syndrome (PWS) is a rare and poorly
understood neurodevelopmental disorder that affects 1
in 15,000 to 20,000 live births [1]. PWS is characterized
by pre- and postnatal hypotonia, endocrine problems,
hyperphagia, temper tantrums and repetitive behavior,
skin picking, dysmorphic facial features, high pain
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threshold, and developmental delays [2]. In addition, in-
dividuals with PWS carry a high risk of psychiatric ill-
ness, such as psychotic, obsessive-compulsive disorder
(OCD), and autism spectrum disorders (ASD).
The underlying cause of PWS is the loss of function of

paternally expressed genes on the long arm of chromo-
some 15q11-q13 due to a de novo deletion (DEL, approxi-
mately 70% of the cases [3]), maternal uniparental disomy
(mUPD, 25% of the cases [4]), and unbalanced transloca-
tion or imprinting center defects (<5% of cases [5]).
Lifetime prevalence of psychotic illness in individuals

with PWS is reported to be up to 60% in individuals
with mUPD and up to 20% in individuals with DEL [1],
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which is at least 18 times higher than that in the general
population [6]. In addition, the mUPD patients are more
likely to have a more severe course of the psychiatric
illness, a higher frequency of relapse, and a poorer re-
sponse to medication [7]. The underlying neurobiology
that places them at-risk is yet unknown. Recently, copy-
number variations (CNVs) at the 15q11.2 locus were
found to be associated with schizophrenia and related
psychosis [8], which suggests common genetic pathways
between schizophrenia, psychotic disorders, and PWS.
In addition, individuals with PWS have a higher preva-

lence of ASD traits, such as impaired social functioning,
rigidity, resistance to change, and repetitive, stereotypic
behavior [9]. These autistic traits are more common in
individuals with mUPD than in those with DEL (40%
versus 20%, respectively). The autistic symptoms found
in PWS are between 20 to 40 times higher than the 1%
reported in the general population [10]. Chromosomal
rearrangements of 15q11-13 locus have been found in
patients with autism [11], suggesting that defective
15q11-13 genes might underlie the ASD traits in individ-
uals with PWS. Further, recent findings indicate a plaus-
ible common neurodevelopmental pathway of autism,
schizophrenia, and bipolar disorder, as family history of
schizophrenia and bipolar disorder increased risk of aut-
ism in other family members [12], and several CNVs in
genome-wide association studies (GWASs) were associ-
ated with developing either of these disorders [13].
Key symptoms indicate that the central nervous sys-

tem (CNS) is adversely affected in PWS. To date, only
two quantitative structural magnetic resonance imaging
(MRI) studies have been performed in adults with PWS,
which reported smaller grey matter volumes in the
frontal, temporal, and parietal [14,15] lobes, and smaller
white matter volumes in the frontal and temporal corti-
ces, brainstem, and cerebellum [15]. An MRI qualitative
study reported enlarged ventricles, decreased parieto-
occipital lobar volume, and sylvian fissure abnormalities
in adults with PWS [16]. However, no quantitative struc-
tural or functional MRI studies have been performed in
children with PWS, and there are no studies evaluating
differences between children with DEL and mUPD.
Since the DEL and mUPD subtypes of PWS differ in
their risk of developing severe psychiatric disorders, a
better understanding of the neurobiology of these sub-
types will shed light on at-risk states.
In the current study, we utilized high resolution MRI

to investigate the brain morphology in children with two
subtypes of PWS (DEL and mUPD) in order to gain in-
sights into the brain structure of young children with
PWS as compared with their healthy siblings. We hy-
pothesized that children with PWS, when compared
with healthy siblings, will show global deficits that will
be reminiscent of those reported in the adults with
PWS. Specifically, we expected smaller overall grey and
white matter volume and larger lateral ventricular vol-
ume in children with PWS when compared with healthy
controls. Since clinical data show that children with
mUPD have greater social and cognitive deficits than
children with DEL, we expected that the brain differ-
ences would be more pronounced in children with
mUPD than in those with DEL. Furthermore, since chil-
dren with mUPD show an increased risk of psychiatric
disorders over children with DEL, we were also inter-
ested in brain differences which may indicate an in-
creased risk of developing a severe psychiatric disorder.

Methods
The study population consisted of 25 children with PWS
who participated in the Dutch PWS Cohort Study [17].
Patients fulfilled the following criteria: 1) genetically
confirmed PWS subtype; 2) age 6 to 18 years old; and 3)
no neurological or psychiatric history.
Eleven age- and gender-matched, typically developing

siblings were included as a control group fulfilling the
following inclusion criteria: 1) age 6 to 18 years old; and
2) no neurological or psychiatric history.
This study was approved by the Medical Ethical

Committee of the Erasmus Medical Center Rotterdam,
Rotterdam, The Netherlands. Written informed con-
sent was obtained in all cases from the caregivers and
children older than 12 years, and assent of children
younger than 12 years.

Intelligence assessment
To assess intelligence of children, a short form of four
subtests (vocabulary, similarities (verbal IQ subtests),
block design, and picture arrangement (performance
IQ subtests)) of the Wechsler Intelligence Scale for
Children-Revised (WISC-R), Dutch version, was used
[18]. Total IQ score was calculated according to an
equation based on the Dutch outpatient population ref-
erence (total IQ = 45.3 + 2.91 × vocabulary standard
score + 2.50 × block design standard score), as has been
used in other studies [19].

Procedure
Prior to the MRI scan, all children were introduced to a
mock scanner and all successfully completed the mock
scanner protocol [20]. One of the caregivers opted to
stay in the room with the MRI scanner, to remain close
to their child.

MRI acquisition
Imaging was performed on a 3T GE 750 Discovery MRI
scanner (General Electric, Milwaukee, WI, USA), using a
dedicated 8-channel head coil. Following 3-plane localiz-
ing and coil intensity calibration scans, a high resolution
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T1-weighted inversion recovery fast spoiled gradient
recalled (IR FSPGR) sequence was obtained with the
following parameters: TR = 10.3 ms, TE = 4.2 ms,
TI = 350 ms, NEX = 1, flip angle = 16°, readout band-
width = 20.8 kHz, matrix 256 × 256, imaging acceler-
ation factor of 2, and an isotropic resolution of 0.9 ×
0.9 × 0.9 mm3 (duration: 5 minutes 40 seconds). All
MRI images were reviewed by a qualified radiologist
(AvdL) within 2 weeks after the MRI acquisition. No
gross brain abnormalities were identified.

Data preprocessing and segmentation
Five children with PWS were excluded from the MRI
analysis due to motion artifacts, and failure of proper
pial and white surface reconstruction by FreeSurfer
(Athinoula A Martinos Center for Biomedical Imaging,
Massachusetts General Hospital, Boston, MA, USA;
http://surfer.nmr.mgh.harvard.edu), leaving 20 eligible
patients for analysis (11 children with DEL, 9 children
with mUPD).
Cortical reconstruction and volumetric segmentation

was performed with the FreeSurfer 5.3 image analysis
suite. The technical details of these procedures are
described elsewhere [21-23]. Briefly, the processing
included removal of non-brain tissue [22,24], automated
Talairach transformation, segmentation of the subcortical
white matter and deep grey matter volume structures
[23,24], intensity normalization [25], and automated top-
ology correction [26]. Parcellation of the cerebral cortex
into units was performed based on gyral and sulcal struc-
ture [27]. Cortical thickness was calculated as the closest
distance from the grey/white boundary to the grey/cere-
brospinal fluid (CSF) boundary at each vertex on the tes-
sellated surface [28]. Procedures for the measurement of
cortical thickness have been validated against histological
analysis [29]. FreeSurfer morphometric procedures have
been demonstrated to show good test-retest reliability
across scanner manufacturers and across field strengths
[30]. All FreeSurfer outputs were manually reviewed by an
author blinded to the patient data (AL), and manual edits
were performed where needed to improve the white and
pial surface reconstruction.

Statistical analysis
Results of cerebral cortex parcellation, based on gyral
and sulcal structure, were exported to SPSS (version 20,
IBM Corporation, Armonk, NY, USA) for appropriate
statistical analyses. Nonparametric Kruskal–Wallis tests
were performed for both global brain morphology mea-
sures and exploratory subcortical grey and white matter
volumes. Pairwise comparisons were performed for
significant main effects by conducting nonparametric
Mann–Whitney tests. Bonferroni correction was applied
(Pcorr = P × 3) for group comparisons and we report
adjusted Pcorr values unless indicated otherwise. The
critical Pcorr value was set at 0.05.
For global brain measurements, the Benjamini–

Hochberg false discovery rate (FDR) correction of 0.05%
was applied to correct for multiple testing. Both uncor-
rected and FDR-corrected P values are reported. No
correction was performed for subcortical and cortical
analyses as they were of exploratory nature.
For exploratory analyses, volume measures were cor-

rected for total intracranial volume (TIV) by dividing
each value by the individual’s TIV value, which resulted
in values between 0 and 1, reflecting relative size of the
particular structure in relation to the TIV. TIV was cal-
culated as the sum of total cerebral grey and white mat-
ter volumes, lateral, third and fourth ventricles, choroid
plexus, vessels, cerebellar grey and white matter, and
surface CSF.

Results
Clinical data are presented in Table 1. No significant
differences were found in age, handedness, and gender
distribution among groups, and no differences in IQ
scores and age at start of growth hormone (GH) treat-
ment. Only two children in the mUPD group were diag-
nosed with ASD. None of the children had a history of
treatment with psychotropic medication.

Global brain measures
The results of global measures are presented in Table 2.

DEL versus healthy controls
Children with DEL had a significantly smaller TIV (Pcorr
<0.01) when compared with healthy controls. They also
had a significantly smaller total grey matter volume
(Pcorr <0.01), both cortical (Pcorr <0.05) and subcortical
(Pcorr <0.01), total white matter volume (P = 0.02, not
significant after Bonferroni correction), brainstem (Pcorr
<0.01), and cerebellum (Pcorr <0.01) (Table 2). No differ-
ences were found in corpus callosum volume, lateral,
third and fourth ventricles, and surface CSF compared
with healthy controls.
After correction for TIV, the ratios of grey and white

matter volume, brainstem, cerebellum, and lateral, third,
and fourth ventricles to TIV were not significant between
children with DEL and controls, which suggests that al-
though overall smaller, the brain had developed propor-
tionally (Table 3). However, the corpus callosum volume,
corrected for TIV, was relatively larger (Pcorr <0.05).

mUPD versus healthy controls
No difference was found in TIV between children with
mUPD and healthy controls. They also had normal total
grey matter (cortical and subcortical) volumes compared
with healthy controls. Total white matter volume was

http://surfer.nmr.mgh.harvard.edu


Table 1 Demographic data of the participants

PWS Control P value

DEL mUPD

Age (years) 12.3 (3.2) 10.6 (2.5) 11.7 (2.7) 0.40

Age range (years) 6.7 to 17.0 6.8 to 13.1 7.1 to 15.8

Head circumference SDS −0.37 (0.84) 0.8 (1.2) n/a 0.11a

Sample size (n) 11 9 11 0.26

Male 5 4 8 0.60

Female 6 5 3 0.50

Handedness (n) 0.25

Left 1 6 1

Right 10 1 10

Ambidextrous 0 2 0

Age at start of GH
treatment (years)

5.8 (3.0) 4.4 (1.8) 0.37

Total IQ score 69.5 (16.0) 67.2 (14.5) 0.82

Verbal IQ 4.7 (3.4) 4.0 (2.6) 0.66

Performance IQ 4.7 (2.8) 4.2 (2.9) 0.60

Psychiatric history 0 2b

Use of psychotropic
medication

0 0

Data expressed as mean (SD) or number. No significant differences were
found in either age or gender distribution across groups. aValues of DEL and
mUPD were compared to 0 SDS; btwo children diagnosed with ASD prior to
MRI scan. DEL, deletion; GH, growth hormone; mUPD, maternal uniparental
disomy; n/a, not applicable; PWS, Prader–Willi syndrome; SD, standard
deviation; SDS, standard deviation score.
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smaller (P = 0.03, not significant after Bonferroni correc-
tion). Children with mUPD also had a smaller brainstem
volume (Pcorr <0.05), enlarged lateral ventricles (Pcorr
<0.01), and larger surface CSF (Pcorr <0.05) (see also
Figure 1). No differences were found in cerebellum and
corpus callosum volume or third and fourth ventricles
(Table 2).
After correction for TIV, a significantly dispropor-

tionate increase in the volume of lateral ventricles
(Pcorr <0.01) and surface CSF (Pcorr <0.05) was found
(Additional file 1: Table S1).
DEL versus mUPD
Children with DEL had a smaller total grey matter vol-
ume (P = 0.04, not significant after Bonferroni correc-
tion), subcortical grey matter volume (Pcorr <0.05), and
cerebellum (Pcorr <0.05) compared with children with
mUPD (Table 2).
After correction for TIV, children with DEL had sig-

nificantly larger corpus callosum than children with
mUPD (Pcorr <0.05) (Additional file 1: Table S1).
Exploratory focal measures
Cortical grey matter volumes
Cortical grey matter volumes, corrected for TIV, are
presented in Table 3 and Figure 1. We report only sig-
nificant results. The non-significant findings can be pro-
vided upon request.

DEL versus healthy controls
Children with DEL had a significantly larger volume of
right superior parietal lobe (Pcorr <0.01), larger volume
of banks of left superior temporal sulcus (P = 0.02, not
significant after Bonferroni correction), and smaller vol-
ume of right parahippocampal gyrus (P = 0.037, not sig-
nificant after Bonferroni correction) compared with
healthy controls.

mUPD versus healthy controls
Children with mUPD had smaller grey matter volumes
in right parahippocampal gyrus (Pcorr <0.05) and left
entorhinal (P = 0.04, not significant after Bonferroni cor-
rection) compared with healthy controls. Further, chil-
dren with mUPD had significantly larger right superior
parietal lobe (Pcorr <0.01) and banks of right superior
sulcus (Pcorr <0.05).

DEL versus mUPD
Children with mUPD had smaller cortical grey matter vol-
umes in right lingual gyrus (Pcorr <0.05), left entorhinal
(Pcorr <0.05), and banks of left and right superior temporal
sulcus (P = 0.047 and P = 0.03, respectively, not significant
after Bonferroni correction) when compared to children
with DEL, but not from those in healthy controls.

Cortical white matter volumes
Cortical white matter volumes, corrected for TIV, are
presented in Table 4 and Figure 2. We report only sig-
nificant findings. The non-significant findings can be
provided upon request.

DEL versus healthy controls
Children with DEL had smaller white matter volume
of left pars orbitalis (P = 0.03, not significant after
Bonferroni correction) compared with healthy controls.
No other differences were found.

mUPD versus healthy controls
Children with mUPD had smaller white matter volumes
in left superior frontal gyrus (Pcorr <0.01), left pars
orbitalis (P = 0.02, not significant after Bonferroni cor-
rection), right pars triangularis (Pcorr <0.05), right pars
orbitalis (Pcorr <0.01), and right posterior cingulate (Pcorr
<0.05) compared with healthy controls.



Table 2 Global brain volumes in children with PWS and healthy controls

PWS Control P value Pcorr value Pcorr value Pcorr value

Between groups DEL
versus
control

mUPD
versus
control

mUPD
versus
DEL

(FDR-corrected)

DEL mUPD

Mean SD Mean SD Mean SD

TIV (mm3) 1,234,546 107,087 133,1869 128,966 1,410,393 98,231 0.007 (0.02) 0.005 ns ns

Total GM (mm3) 684,884 59,560 754,819 74,391 788,263 67,474 0.008 (0.02) 0.007 ns 0.118

Cortical GM (mm3) 511,270 53,409 563,276 65,484 588,374 60,604 0.026 (0.047) 0.026 ns ns

Subcortical GM (mm3) 173,615 12,739 191,543 11,495 199,890 2,525 <0.001 (0.001) <0.0001 ns 0.036

Total WM (mm3) 408,399 45,050 413,740 60,537 462,809 38,073 0.034 (0.053) 0.061 0.098 ns

Total CC (mm3) 3,053 345 2,784 533 3,010 342 ns (ns) ns ns ns

Brainstem (mm3) 16,207 1,378 17,384 1,511 20,493 1,858 <0.001 (0.001) <0.0001 0.016 ns

Ventricles (mm3)

Lateral (mm3) 14,318 11,606 20,598 8,781 9,244 610 0.001 (0.004) ns 0.006 ns

Third (mm3) 932 433 1,091 275 868 190 ns (ns) ns ns ns

Fourth (mm3) 1,986 495 1,952 394 1,853 455 ns (ns) ns ns ns

Cerebellum (mm3) 124,737 11,456 141,378 9,644 146,092 11,022 0.001 (0.004) 0.001 ns 0.042

Surface CSF (mm3) 1,199 395 1,469 253 1,077 255 0.027 (0.047) ns 0.029 0.133

Mean cortical thickness (mm) 2.77 0.104 2.89 0.185 2.8 0.106 0.066 (0.08)

Mean pial cortical area (mm2) 221,117 22,519 232,867 20,785 249,491 23,373 0.05 (0.07)

Both uncorrected and FDR-corrected P values are reported. Pcorr values that did not survive the Bonferroni correction are included. CC, corpus callosum; CSF,
cerebrospinal fluid; DEL, deletion; FDR, false discovery rate; GM, grey matter; mUPD, maternal uniparental disomy; ns, not significant; PWS, Prader–Willi syndrome;
SD, standard deviation; TIV, total intracranial volume; WM, white matter.
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DEL versus mUPD
Children with mUPD had smaller white matter
volumes in bilateral precuneus (Pcorr <0.05) and
right caudal anterior cingulate cortex (Pcorr <0.01)
when compared to children with DEL. Further, these
Table 3 Focal cortical grey matter volumes in children with P

PWS Control

DEL mUPD

Mean SD Mean SD Mean SD

Left entorhinal 0.00153 0.00025 0.00123 0.00039 0.00148 0.00033

Left banks
of STS

0.00237 0.00027 0.00217 0.00053 0.00204 0.00032

Right superior
parietal

0.01359 0.00127 0.01363 0.00142 0.01163 0.00099

Right lingual 0.00621 0.00072 0.00532 0.00087 0.00584 0.00059

Right
parahippocampal

0.00162 0.00021 0.00154 0.0003 0.00194 0.00036

Right banks of
STS

0.00201 0.00026 0.00237 0.00033 0.00202 0.00045

All measures presented in table are corrected for TIV. Pcorr values that did not surviv
uniparental disomy; ns, not significant; PWS, Prader–Willi syndrome; SD, standard d
children had smaller right pars orbitalis (P = 0.042,
not significant after Bonferroni correction), left super-
ior frontal gyrus (Pcorr <0.05), and right posterior
cingulate cortex (Pcorr <0.01) compared with children
with DEL and healthy controls.
WS and healthy controls

P value
between
groups

Pcorr value DEL
versus control

Pcorr value mUPD
versus control

Pcorr value
mUPD versus

DEL

0.028 ns 0.127 0.031

0.041 0.06 ns 0.142

0.002 0.006 0.006 ns

0.032 ns ns 0.027

0.014 0.11 0.016 ns

0.032 ns 0.045 0.091

e the Bonferroni correction are included. DEL, deletion; mUPD, maternal
eviation; STS, superior temporal sulcus; TIV, total intracranial volume.



Figure 1 Ventricular enlargement and cortical focal grey matter volumes in children with PWS and healthy controls. Top row: ventricular
enlargement in children with PWS. (I) Healthy control; (II) child with DEL; and (III) child with mUPD. All three presented children were of the
same age and gender. Lower three rows: cortical focal measures in children with PWS and healthy controls. Cortical surface is presented inflated
with curvature overlay (in green and red shades). Second row: children with DEL compared to healthy controls; third row: children with mUPD
compared to healthy controls; last row: children with mUPD compared to children with DEL. All the views are in sagittal plane. Columns (from
left to right): left lateral, left medial, right medial, and right lateral. DEL, deletion; mUPD, maternal uniparental disomy; PWS, Prader–Willi syndrome.
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Subcortical grey matter structures
Subcortical grey matter volumes, corrected for TIV, are
presented in Additional file 2: Table S2.
DEL versus healthy controls
Children with DEL had enlarged volumes of left basal
ganglia (Pcorr <0.05) compared with healthy controls. No
differences were found in bilateral limbic area, right
basal ganglia, and bilateral thalamus.
mUPD versus healthy controls
Children with mUPD had larger left basal ganglia (P =
0.026, not significant after Bonferroni correction) when
compared with healthy controls. No other differences
were observed.
DEL versus mUPD
No differences were found in volumes of subcortical
grey volumes between children with DEL and mUPD.
Discussion
Our study is the first to investigate brain morphological
differences in children with PWS using high resolution
MRI techniques, and the first study to investigate differ-
ences between children with DEL and mUPD. We found
that children with both DEL and mUPD had smaller
brainstem volumes, and a trend towards smaller white
matter volume and total cortical pial surface area com-
pared with healthy controls, indicating early deviations
in prenatal brain development in children with PWS.
However, there were also differences between children
with DEL and those with mUPD. Children with DEL
had an overall smaller, but proportionately developed
brain and normal cortical thickness, while children with
mUPD had a significantly increased surface CSF and
pronounced enlargement of the lateral ventricles com-
pared to healthy controls. Further, exploratory cortical
focal analyses revealed a significantly smaller white mat-
ter volume in children with mUPD in areas implicated
in default mode network (DMN) and cognitive decision-
making. Our results suggest that although both PWS



Table 4 Focal cortical white matter volumes in children with PWS and healthy controls

PWS Control P value Pcorr value Pcorr value Pcorr value

Between
groups

DEL
versus
control

mUPD
versus
control

mUPD
versus
DEL

DEL mUPD

Mean SD Mean SD Mean SD

Left pars orbitalis 0.00057 0.00008 0.00055 0.00008 0.00064 0.00006 0.033 0.09 0.06 ns

Left superior frontal 0.01242 0.0012 0.01101 0.00074 0.01284 0.00032 0.002 ns 0.001 0.026

Left precuneus 0.00679 0.00098 0.00566 0.00096 0.00652 0.00065 0.025 ns ns 0.021

Right pars orbitalis 0.0008 0.00013 0.00070 0.00008 0.00088 0.00011 0.005 ns 0.003 0.127

Right pars triangularis 0.00217 0.00031 0.00190 0.00035 0.0023 0.00038 0.014 ns 0.043 ns

Right caudal anterior cingulate 0.00235 0.00024 0.00237 0.00015 0.00219 0.00034 0.011 ns ns 0.008

Right posterior cingulate 0.00319 0.00025 0.00198 0.00022 0.00314 0.00026 0.008 ns 0.044 0.010

Right precuneus 0.00736 0.00125 0.00282 0.00089 0.00678 0.00079 0.042 ns ns 0.036

All measures presented in table are corrected for TIV. Pcorr values that did not survive the Bonferroni correction are included. DEL, deletion; mUPD, maternal
uniparental disomy; ns, not significant; PWS, Prader–Willi syndrome; SD, standard deviation; TIV, total intracranial volume.
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groups show global brain deficits, children with mUPD
are more severely affected.
Prenatal brain development is a well-orchestrated series

of events consisting of neuronal proliferation and migra-
tion, establishment of synaptic connections, myelination,
and elimination of ineffective synapses (pruning) [31]. Dif-
ferent regions of the brain develop at different time points
and pace, which in turn provides different time windows
for vulnerability to perturbations, but also for effective
intervention. For instance, development of brainstem is fi-
nalized during the first trimester, while development of
cerebellum is initialized during the first trimester, but
Figure 2 Focal white matter volumes in children with PWS and health
overlay (in green and red shades). Top row: children with DEL compared to
healthy controls; last row: children with mUPD compared to children with
left lateral, left medial, right medial, and right lateral. DEL, deletion; mUPD,
extends into the first year after birth [31]. Myelination is
most vulnerable to insults during the late gestational
period, but it continues after birth as well and extends
through adolescence and into early adulthood [32]. By in-
vestigating both global and local neuroanatomical mea-
sures in children with PWS, inferences can therefore be
drawn about a plausible course of neurodevelopment and
the phenotype of PWS.
Both children with DEL and mUPD had smaller brain-

stem volume. The brainstem is responsible for several
basal bodily functions, such as pain perception, respira-
tory regulation [33], and sleep cycle [34], all of which
y controls. Cortical surface is presented inflated with curvature
healthy controls; middle row: children with mUPD compared to

DEL. All the views are in sagittal plane. Columns (from left to right):
maternal uniparental disomy; PWS, Prader–Willi syndrome.
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have been reported to be impaired in PWS. Central sleep
apneas are common in individuals with PWS and pose
an increased mortality risk at a young age [35]. A higher
pain threshold has been reported in children with PWS
[2], as well as disturbed sleep cycle and rapid eye move-
ment (REM) sleep phase abnormalities [36], supporting
our findings of possible brainstem dysfunction in PWS.
Mice lacking necdin (in PWS locus) had smaller
medullar nuclei and a disturbed respiratory rhyth-
mogenesis [37], further suggesting that PWS region is
involved in the neurodevelopment of the brainstem and
the respiratory problems in patients with PWS.
Regardless of the genetic subtype, children with PWS

had a trend towards smaller white matter volume,
indicating reduced structural connectivity or aberrant
myelination in children with PWS. Children with devel-
opmental delay showed delayed myelination [38]. The
smaller white matter volume in children with PWS may
therefore reflect delay in brain maturation and might
underlie cognitive deficits in these children. Important
to note is that several endocrine factors, namely insulin-
like growth factor I (IGF-I) and thyroid hormones
(T3 and T4), which are important neurochemicals in-
volving brain and axonal growth and myelination
[39,40], are impaired in children with PWS, unless
treated. IGF-I levels are very low in most children with
PWS prior to GH treatment [17]. Low free T4 levels
were reported in children with PWS as well [41]. It is
therefore plausible that lower levels of thyroid hormones
and IGF-I had adverse effects on brain growth and
myelination.
Children with mUPD had enlarged ventricles, together

with increased surface CSF volume. In adult patients
with PWS, enlarged ventricles have been reported [16].
Our results suggest that ventricular enlargement occurs
early in life in individuals with PWS. We do not know
when during neurodevelopment the enlargement of the
ventricles took place. Lateral ventricles are large at the
17th gestational week (GW), and decrease in size be-
tween 18th and 24th GW, due to multiple factors, in-
cluding the increasing thickness of the brain
parenchyma, cortical gyrification, and the formation of
the basal ganglia [42]. In the current study, the basal
ganglia were enlarged relative to the intracranial volume,
which may indicate that ventricular enlargement did not
occur at the cost of the basal ganglia, but more likely at
the cost of the cortical volumes. Enlarged ventricles, to-
gether with increased surface CSF, probably due to the
widening of the sulci, indicate disturbances in early pre-
natal gyrification, dendritic arborization, or postnatal
neuronal atrophy in these children. Enlarged ventricles
are widely reported in patients with schizophrenia, both
chronic [43] and first onset medication-naive patients
with schizophrenia [44], and their first-degree unaffected
relatives [45]. Furthermore, enlarged lateral ventricles
were also found in young children with a 22q11.2 dele-
tion who are at very high risk of schizophrenia [46] and
in adolescents with a psychotic bipolar disorder [47].
Given that children with mUPD have an elevated risk of
psychotic illness, our findings suggest that ventricular
enlargement may be part of a predisposition for psych-
otic disease.
Children with DEL showed less enlargement of the lat-

eral ventricles and no increase in surface CSF, suggesting
that brain atrophy is less pronounced in these children
compared to children with mUPD. Since ventricular en-
largement has been reported in adults with DEL [16],
our findings suggest that children with DEL are likely to
develop ventricular enlargement later in life compared
to children with mUPD.
Both children with DEL and mUPD showed a trend

towards smaller cortical surface area, indicating impaired
prenatal brain growth [31]. The development of cortical
surface area is determined by the symmetric cell division
in the neural tube during the first 6 GW, and by the pro-
nounced growth and gyrification that occurs during the
third trimester [42]. Environmental insults during the
first 6 GW usually results in drastic reductions of cor-
tical surface area [31]. It is therefore plausible that the
observed mild reduction in cortical surface area may be
the result of deviations in the gyrification processes dur-
ing the third trimester.
Interestingly, children with DEL show a different pattern

compared to children with mUPD. Smaller cortical and
subcortical grey matter, brainstem, and cerebellum volumes
were found, but cortical thickness was normal compared to
healthy controls. The early development of cortical thick-
ness is determined primarily through neuronal migration,
which takes place between 6th and 24th GW [48]. Further-
more, from the perspective of phylogeny, cortical thickness
is much more preserved compared to measures, such as
brain volume and surface area [31]. Thus, normal cortical
thickness may show that the genetic mechanisms involved
in neuronal migration are not altered in children with DEL.
In contrast, children with mUPD showed a trend to-

wards increased cortical thickness, which may indicate
alterations in neuronal migration or impaired elimin-
ation of ineffective synapses (pruning). Increased cortical
thickness has been reported in children with autism
[49]. Knowing that ASD traits are very common in chil-
dren with mUPD, impaired pruning might therefore
affect integrative processing, complex executive, and so-
cial functions [49], and might underlie ASD symptoms
in children with mUPD.
Holland et al. [50] proposed that developmental arrest

might underlie the core PWS phenotype. In our study,
both children with DEL and mUPD showed signs of im-
paired brain growth, however it was more pronounced
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in children with DEL. Furthermore, while children with
DEL show signs of arrested, but not necessarily deviant,
brain development, children with mUPD showed a
plausible divergence in the neurodevelopmental trajec-
tory. However, longitudinal studies are necessary to con-
firm the differences in neurodevelopmental trajectories
between children with DEL and mUPD. An important
genetic difference between individuals with DEL and
mUPD is the overexpression of maternally imprinted
UBE3A gene in brains of patients with mUPD [51].
UBE3A plays an important role in dendritic tree forma-
tion [52], and both knockout and overexpression of the
UBE3A gene results in reduced growth and branching of
the dendrites [52]. UBE3A regulates synapse develop-
ment and is highly expressed during a novel learning
situation [53]. Overexpression of UBE3A in mUPD and
resulting failure to develop new synapses might be
underlying the observed diversion, and possibly the cor-
tical atrophy and ventricular enlargement in children
with mUPD.
Exploratory cortical focal analyses revealed smaller

white matter volume in the right caudal anterior and
posterior cingulate cortex, left superior frontal gyrus,
and bilateral precuneus in children with mUPD com-
pared to those with DEL and to healthy controls. These
areas are associated with cognitive control, moral
decision-making, and emotion cognition [54], and are
implicated in DMN [55,56]. The DMN is a functional
brain network that is activated in the absence of cogni-
tive tasks [56], and is thought to reflect self-oriented and
social cognitive processes [57]. DMN dysfunction is as-
sociated with multiple brain disorders, such as attention
deficit and hyperactivity disorder, autism, and schizo-
phrenia [56,58-60]. Interestingly, electrophysiological
correlates of decision-making was found diminished in
adults with mUPD, but not in those with DEL [61], and
individuals with mUPD had more autistic-like symptoms
on the social interaction scale [62]. Impairment of task-
switching was found in individuals with PWS, although
genetic subtypes were not reported [63]. While this
should be confirmed by functional imaging studies, it is
plausible that aberrant connections within these brain
areas underlie social cognitive decision-making impair-
ment in individuals with mUPD. Further, white matter
volume in right pars triangularis and bilateral pars
opercularis (inferior frontal gyrus (IFG)) was smaller in
children with mUPD. Interestingly, lower functional
connectivity in the IFG has been described in patients
with schizophrenia and in individuals at ultra-high risk
of developing psychosis [64], suggesting that IFG might
be involved in the etiology of psychotic illness.
These results are limited by the small sample size, thus

generalization to broader PWS population should be
undertaken with great caution. Further, the control
group consists of age- and gender-matched healthy sib-
lings. A possible concern of recruiting siblings as the
control group is that volumes of most brain struc-
tures are heritable [65]. However, as PWS occurs due
to a de novo genetic event during conception, we as-
sume that unaffected siblings are representative of a
random sample of the general population. The great
advantage of having siblings as the control group is
that the effects of possible environmental and heredi-
tary factors on brain development are greatly reduced,
and that the observed significant differences are more
likely PWS-specific.
All children with PWS were treated with GH (1 mg/

m2 per day) at the time of the study; therefore, our find-
ings are confounded by GH treatment. However, as it is
known that GH and IGF-I increase brain growth, mye-
lination, and has neuroprotective properties [39] we
could speculate that if the GH treatment had any effect
of the brain, it would have a positive effect in terms of
brain normalization.

Conclusions
Our findings provide preliminary insights into the brain
anatomy of children with PWS. All children with PWS
showed impaired brain growth. Children with mUPD
showed signs of early brain atrophy and a trend towards
increased cortical thickness. In contrast, children with
DEL showed signs of fundamentally arrested, although
not deviant brain development. The findings in children
with mUPD are reminiscent of those in schizophrenia or
autism, which confirms the clinical data of increased risk
of ASD and psychotic illness in individuals with mUPD.
The reported brain abnormalities are likely to precede
psychiatric illness as none of the children were under
psychiatrist treatment at the time of the study. Our
results suggest that children with mUPD have a funda-
mentally different brain structure and divergent develop-
mental trajectories compared with children with DEL
and healthy controls.
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