11 research outputs found

    Loss-of-Function Mutations in FRRS1L Lead to an Epileptic-Dyskinetic Encephalopathy

    Get PDF
    Glutamatergic neurotransmission governs excitatory signaling in the mammalian brain, and abnormalities of glutamate signaling have been shown to contribute to both epilepsy and hyperkinetic movement disorders. The etiology of many severe childhood movement disorders and epilepsies remains uncharacterized. We describe a neurological disorder with epilepsy and prominent choreoathetosis caused by biallelic pathogenic variants in FRRS1L, which encodes an AMPA receptor outer-core protein. Loss of FRRS1L function attenuates AMPA-mediated currents, implicating chronic abnormalities of glutamatergic neurotransmission in this monogenic neurological disease of childhood

    Expression of meis and hoxa11 in dipnoan and teleost fins provides new insights into the evolution of vertebrate appendages

    Get PDF
    Background: The concerted activity of Meis and Hoxa11 transcription factors is essential for the subdivision of tetrapod limbs into proximo-distal (PD) domains; however, little is know about the evolution of this patterning mechanism. Here, we aim to study the expression of meis and hoxa11 orthologues in the median and paired rayed fins of zebrafish and in the lobed fins of the Australian lungfish. Results: First, a late phase of expression of meis1.1 and hoxa11b in zebrafish dorsal and anal fins relates with segmentation of endochondral elements in proximal and distal radials. Second, our zebrafish in situ hybridization results reveal spatial and temporal changes between pectoral and pelvic fins. Third, in situ analysis of meis1, meis3 and hoxa11 genes in Neoceratodus pectoral fins identifies decoupled domains of expression along the PD axis. Conclusions: Our data raise the possibility that the origin of stylopod and zeugopod lies much deeper in gnathostome evolution and that variation in meis and hoxa11 expression has played a substantial role in the transformation of appendage anatomy. Moreover, these observations provide evidence that the Meis/Hoxa11 profile considered a hallmark of stylopod/zeugopod patterning is present in Neoceratodus. Electronic supplementary material The online version of this article (10.1186/s13227-018-0099-9) contains supplementary material, which is available to authorized users

    Fin modules: an evolutionary perspective on appendage disparity in basal vertebrates

    Full text link
    Abstract Background Fishes are extremely speciose and also highly disparate in their fin configurations, more specifically in the number of fins present as well as their structure, shape, and size. How they achieved this remarkable disparity is difficult to explain in the absence of any comprehensive overview of the evolutionary history of fish appendages. Fin modularity could provide an explanation for both the observed disparity in fin configurations and the sequential appearance of new fins. Modularity is considered as an important prerequisite for the evolvability of living systems, enabling individual modules to be optimized without interfering with others. Similarities in developmental patterns between some of the fins already suggest that they form developmental modules during ontogeny. At a macroevolutionary scale, these developmental modules could act as evolutionary units of change and contribute to the disparity in fin configurations. This study addresses fin disparity in a phylogenetic perspective, while focusing on the presence/absence and number of each of the median and paired fins. Results Patterns of fin morphological disparity were assessed by mapping fin characters on a new phylogenetic supertree of fish orders. Among agnathans, disparity in fin configurations results from the sequential appearance of novel fins forming various combinations. Both median and paired fins would have appeared first as elongated ribbon-like structures, which were the precursors for more constricted appendages. Among chondrichthyans, disparity in fin configurations relates mostly to median fin losses. Among actinopterygians, fin disparity involves fin losses, the addition of novel fins (e.g., the adipose fin), and coordinated duplications of the dorsal and anal fins. Furthermore, some pairs of fins, notably the dorsal/anal and pectoral/pelvic fins, show non-independence in their character distribution, supporting expectations based on developmental and morphological evidence that these fin pairs form evolutionary modules. Conclusions Our results suggest that the pectoral/pelvic fins and the dorsal/anal fins form two distinct evolutionary modules, and that the latter is nested within a more inclusive median fins module. Because the modularity hypotheses that we are testing are also supported by developmental and variational data, this constitutes a striking example linking developmental, variational, and evolutionary modules.https://deepblue.lib.umich.edu/bitstream/2027.42/136630/1/12915_2017_Article_370.pd
    corecore