111 research outputs found

    Broader Neutralizing Antibodies against H5N1 Viruses Using Prime-Boost Immunization of Hyperglycosylated Hemagglutinin DNA and Virus-Like Particles

    Get PDF
    BACKGROUND: Highly pathogenic avian influenza (HPAI) H5N1 viruses and their transmission capability from birds to humans have raised global concerns about a potential human pandemic. The inherent nature of antigenic changes in influenza viruses has not been sufficiently taken into account in immunogen designs for broadly protective HPAI H5N1 vaccines. METHODS: We designed a hyperglycosylated HA vaccine using N-linked glycan masking on highly variable sequences in the HA1 globular head. Immunization of these hyperglycosylated HA DNA vaccines followed by a flagellin-containing virus-like particle booster in mice was conducted to evaluate neutralizing antibody responses against various clades of HPAI H5N1 viruses. RESULTS: We introduced nine N-X-S/T motifs in five HA1 regions: 83NNT, 86NNT, 94NFT, 127NSS, 138NRT, 156NTT, 161NRS, 182NDT, and 252NAT according to sequence alignment analyses from 163 HPAI H5N1 human isolates. Although no significant differences of anti-HA total IgG titers were found with these hyperglycosyalted HA compared to the wild-type control, the 83NNT and 127NSS mutants elicited significantly potent cross-clade neutralizing antibodies against HPAI H5N1 viruses. CONCLUSIONS: This finding may have value in terms of novel immunogen design for developing cross-protective H5N1 vaccines

    A short-list of pairing-friendly curves resistant to Special TNFS at the 128-bit security level

    Get PDF
    https://www.iacr.org/docs/pub_2013-16.htmlThis paper is the IACR version. It can be made freely available on the homepages of authors, on their employer's institutional page, and in non-commercial archival repositories such as the Cryptology ePrint Archive, ArXiv/CoRR, HAL, etc.International audienceThere have been notable improvements in discrete logarithm computations in finite fields since 2015 and the introduction of the Tower Number Field Sieve algorithm (TNFS) for extension fields. The Special TNFS is very efficient in finite fields that are target groups of pairings on elliptic curves, where the characteristic is special (e.g.~sparse). The key sizes for pairings should be increased, and alternative pairing-friendly curves can be considered.We revisit the Special variant of TNFS for pairing-friendly curves. In this case the characteristic is given by a polynomial of moderate degree (between 4 and 38) and tiny coefficients, evaluated at an integer (a seed). We present a polynomial selection with a new practical trade-off between degree and coefficient size. As a consequence, the security of curves computed by Barbulescu, El~Mrabet and Ghammam in 2019 should be revised: we obtain a smaller estimated cost of STNFS for all curves except BLS12 and BN.To obtain TNFS-secure curves, we reconsider the Brezing--Weng generic construction of families of pairing-friendly curves and estimate the cost of our new Special TNFS algorithm for these curves. This improves on the work of Fotiadis and Konstantinou, Fotiadis and Martindale, and Barbulescu, El~Mrabet and Ghammam. We obtain a short-list of interesting families of curves that are resistant to the Special TNFS algorithm, of embedding degrees 10 to 16 for the 128-bit security level. We conclude that at the 128-bit security level, BLS-12 and Fotiadis--Konstantinou--Martindale curves with k=12k=12 over a 440 to 448-bit prime field seem to be the best choice for pairing efficiency. We also give hints at the 192-bit security level

    A Mitosis Block Links Active Cell Cycle with Human Epidermal Differentiation and Results in Endoreplication

    Get PDF
    How human self-renewal tissues co-ordinate proliferation with differentiation is unclear. Human epidermis undergoes continuous cell growth and differentiation and is permanently exposed to mutagenic hazard. Keratinocytes are thought to arrest cell growth and cell cycle prior to terminal differentiation. However, a growing body of evidence does not satisfy this model. For instance, it does not explain how skin maintains tissue structure in hyperproliferative benign lesions. We have developed and applied novel cell cycle techniques to human skin in situ and determined the dynamics of key cell cycle regulators of DNA replication or mitosis, such as cyclins E, A and B, or members of the anaphase promoting complex pathway: cdc14A, Ndc80/Hec1 and Aurora kinase B. The results show that actively cycling keratinocytes initiate terminal differentiation, arrest in mitosis, continue DNA replication in a special G2/M state, and become polyploid by mitotic slippage. They unambiguously demonstrate that cell cycle progression coexists with terminal differentiation, thus explaining how differentiating cells increase in size. Epidermal differentiating cells arrest in mitosis and a genotoxic-induced mitosis block rapidly pushes epidermal basal cells into differentiation and polyploidy. These observations unravel a novel mitosis-differentiation link that provides new insight into skin homeostasis and cancer. It might constitute a self-defence mechanism against oncogenic alterations such as Myc deregulation

    Bioreducible Liposomes for Gene Delivery: From the Formulation to the Mechanism of Action

    Get PDF
    BACKGROUND: A promising strategy to create stimuli-responsive gene delivery systems is to exploit the redox gradient between the oxidizing extracellular milieu and the reducing cytoplasm in order to disassemble DNA/cationic lipid complexes (lipoplexes). On these premises, we previously described the synthesis of SS14 redox-sensitive gemini surfactant for gene delivery. Although others have attributed the beneficial effects of intracellular reducing environment to reduced glutathione (GSH), these observations cannot rule out the possible implication of the redox milieu in its whole on transfection efficiency of bioreducible transfectants leaving the determinants of DNA release largely undefined. METHODOLOGY/PRINCIPAL FINDINGS: With the aim of addressing this issue, SS14 was here formulated into binary and ternary 100 nm-extruded liposomes and the effects of the helper lipid composition and of the SS14/helper lipids molar ratio on chemical-physical and structural parameters defining transfection effectiveness were investigated. Among all formulations tested, DOPC/DOPE/SS14 at 25:50:25 molar ratio was the most effective in transfection studies owing to the presence of dioleoyl chains and phosphatidylethanolamine head groups in co-lipids. The increase in SS14 content up to 50% along DOPC/DOPE/SS14 liposome series yielded enhanced transfection, up to 2.7-fold higher than that of the benchmark Lipofectamine 2000, without altering cytotoxicity of the corresponding lipoplexes at charge ratio 5. Secondly, we specifically investigated the redox-dependent mechanisms of gene delivery into cells through tailored protocols of transfection in GSH-depleted and repleted vs. increased oxidative stress conditions. Importantly, GSH specifically induced DNA release in batch and in vitro. CONCLUSIONS/SIGNIFICANCE: The presence of helper lipids carrying unsaturated dioleoyl chains and phosphatidylethanolamine head groups significantly improved transfection efficiencies of DOPC/DOPE/SS14 lipoplexes. Most importantly, this study shows that intracellular GSH levels linearly correlated with transfection efficiency while oxidative stress levels did not, highlighting for the first time the pivotal role of GSH rather than oxidative stress in its whole in transfection of bioreducible vectors

    Experimental and theoretical studies of nanofluid thermal conductivity enhancement: a review

    Get PDF
    Nanofluids, i.e., well-dispersed (metallic) nanoparticles at low- volume fractions in liquids, may enhance the mixture's thermal conductivity, knf, over the base-fluid values. Thus, they are potentially useful for advanced cooling of micro-systems. Focusing mainly on dilute suspensions of well-dispersed spherical nanoparticles in water or ethylene glycol, recent experimental observations, associated measurement techniques, and new theories as well as useful correlations have been reviewed

    Effects of circadian disruption on physiology and pathology: from bench to clinic (and back)

    Get PDF
    Nested within the hypothalamus, the suprachiasmatic nuclei (SCN) represent a central biological clock that regulates daily and circadian (i.e., close to 24 h) rhythms in mammals. Besides the SCN, a number of peripheral oscillators throughout the body control local rhythms and are usually kept in pace by the central clock. In order to represent an adaptive value, circadian rhythms must be entrained by environmental signals or zeitgebers, the main one being the daily light?dark (LD) cycle. The SCN adopt a stable phase relationship with the LD cycle that, when challenged, results in abrupt or chronic changes in overt rhythms and, in turn, in physiological, behavioral, and metabolic variables. Changes in entrainment, both acute and chronic, may have severe consequences in human performance and pathological outcome. Indeed, animal models of desynchronization have become a useful tool to understand such changes and to evaluate potential treatments in human subjects. Here we review a number of alterations in circadian entrainment, including jet lag, social jet lag (i.e., desynchronization between body rhythms and normal time schedules), shift work, and exposure to nocturnal light, both in human subjects and in laboratory animals. Finally, we focus on the health consequences related to circadian/entrainment disorders and propose a number of approaches for the management of circadian desynchronization.Fil: Chiesa, Juan José. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Duhart, José Manuel. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Casiraghi, Leandro Pablo. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Paladino, Natalia. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Bussi, Ivana Leda. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Golombek, Diego Andrés. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Expert consensus document: Clinical and molecular diagnosis, screening and management of Beckwith-Wiedemann syndrome: an international consensus statement.

    Get PDF
    Beckwith-Wiedemann syndrome (BWS), a human genomic imprinting disorder, is characterized by phenotypic variability that might include overgrowth, macroglossia, abdominal wall defects, neonatal hypoglycaemia, lateralized overgrowth and predisposition to embryonal tumours. Delineation of the molecular defects within the imprinted 11p15.5 region can predict familial recurrence risks and the risk (and type) of embryonal tumour. Despite recent advances in knowledge, there is marked heterogeneity in clinical diagnostic criteria and care. As detailed in this Consensus Statement, an international consensus group agreed upon 72 recommendations for the clinical and molecular diagnosis and management of BWS, including comprehensive protocols for the molecular investigation, care and treatment of patients from the prenatal period to adulthood. The consensus recommendations apply to patients with Beckwith-Wiedemann spectrum (BWSp), covering classical BWS without a molecular diagnosis and BWS-related phenotypes with an 11p15.5 molecular anomaly. Although the consensus group recommends a tumour surveillance programme targeted by molecular subgroups, surveillance might differ according to the local health-care system (for example, in the United States), and the results of targeted and universal surveillance should be evaluated prospectively. International collaboration, including a prospective audit of the results of implementing these consensus recommendations, is required to expand the evidence base for the design of optimum care pathways
    • 

    corecore