212 research outputs found

    Towards quantum computing with single atoms and optical cavities on atom chips

    Full text link
    We report on recent developments in the integration of optical microresonators into atom chips and describe some fabrication and implementation challenges. We also review theoretical proposals for quantum computing with single atoms based on the observation of photons leaking through the cavity mirrors. The use of measurements to generate entanglement can result in simpler, more robust and scalable quantum computing architectures. Indeed, we show that quantum computing with atom-cavity systems is feasible even in the presence of relatively large spontaneous decay rates and finite photon detector efficiencies.Comment: 14 pages, 6 figure

    Crystal sedimentation and stone formation

    Get PDF
    Mechanisms of crystal collision being the first step of aggregation (AGN) were analyzed for calcium oxalate monohydrate (COM) directly produced in urine. COM was produced by oxalate titration in urine of seven healthy men, in solutions of urinary macromolecules and in buffered distilled water (control). Crystal formation and sedimentation were followed by a spectrophotometer and analyzed by scanning electron microscopy. Viscosity of urine was measured at 37°C. From results, sedimentation rate (vS), particle diffusion (D) and incidences of collision of particles in suspension by sedimentation (IS) and by diffusion (ID) were calculated. Calculations were related to average volume and urinary transit time of renal collecting ducts (CD) and of renal pelvis. vS was in urine 0.026 ± 0.012, in UMS 0.022 ± 0.01 and in control 0.091 ± 0.02 cm min−1 (mean ± SD). For urine, a D of 9.53 ± 0.97 μm within 1 min can be calculated. At maximal crystal concentration, IS was only 0.12 and ID was 0.48 min−1 cm−3 which, even at an unrealistic permanent and maximal crystalluria, would only correspond to less than one crystal collision/week/CD, whereas to the same tubular wall being in horizontal position 1.3 crystals/min and to a renal stone 624 crystals/cm2 min could drop by sedimentation. Sedimentation to renal tubular or pelvic wall, where crystals can accumulate and meet with a tissue calcification or a stone, is probably essential for stone formation. Since vS mainly depends on particle size, reducing urinary supersaturation and crystal growth by dietary oxalate restriction seems to be an important measure to prevent aggregation

    An experimental study of sexual function improving effect of Myristica fragrans Houtt. (nutmeg)

    Get PDF
    BACKGROUND: Myristica fragrans Houtt. (nutmeg) has been mentioned in Unani medicine to be of value in the management of male sexual disorders. The present study was undertaken to evaluate the aphrodisiac effect of 50% ethanolic extract of nutmeg along with its likely adverse effects and acute toxicity using various animal models. METHODS: The suspension of the extract was administered (100, 250 and 500 mg/kg, p.o.) to different groups of male rats daily for seven days. The female rats involved in mating were made receptive by hormonal treatment. The general mating behaviour, libido and potency were studied and compared with the standard reference drug sildenafil citrate. Likely adverse effects and acute toxicity of the extract were also evaluated. RESULTS: Oral administration of the extract at the dose of 500 mg/kg, produced significant augmentation of sexual activity in male rats. It significantly increased the Mounting Frequency, Intromission Frequency, Intromission Latency and caused significant reduction in the Mounting Latency and Post Ejaculatory Interval. It also significantly increased Mounting Frequency with penile anaesthetisation as well as Erections, Quick Flips, Long Flips and the aggregate of penile reflexes with penile stimulation. The extract was also observed to be devoid of any adverse effects and acute toxicity. CONCLUSION: The resultant significant and sustained increase in the sexual activity of normal male rats without any conspicuous adverse effects indicates that the 50% ethanolic extract of nutmeg possesses aphrodisiac activity, increasing both libido and potency, which might be attributed to its nervous stimulating property. The present study thus provides a scientific rationale for the traditional use of nutmeg in the management of male sexual disorders

    Screening of anti-dengue activity in methanolic extracts of medicinal plants

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dengue fever regardless of its serotypes has been the most prevalent arthropod-borne viral diseases among the world population. The development of a dengue vaccine is complicated by the antibody-dependent enhancement effect. Thus, the development of a plant-based antiviral preparation promises a more potential alternative in combating dengue disease.</p> <p>Methods</p> <p>Present studies investigated the antiviral effects of standardised methanolic extracts of <it>Andrographis paniculata, Citrus limon, Cymbopogon citratus, Momordica charantia, Ocimum sanctum </it>and <it>Pelargonium citrosum </it>on dengue virus serotype 1 (DENV-1).</p> <p>Results</p> <p><it>O. sanctum </it>contained 88.6% of total flavonoids content, an amount that was the highest among all the six plants tested while the least was detected in <it>M. charantia</it>. In this study, the maximum non-toxic dose (MNTD) of the six medicinal plants was determined by testing the methanolic extracts against Vero E6 cells <it>in vitro</it>. Studies also determined that the MNTD of methanolic extract was in the decreasing order of <it>M. charantia </it>><it>C. limon </it>><it>P. citrosum, O. sanctum </it>><it>A. paniculata </it>><it>C. citratus</it>. Antiviral assay based on cytopathic effects (CPE) denoted by degree of inhibition upon treating DENV1-infected Vero E6 cells with MNTD of six medicinal plants showed that <it>A. paniculata </it>has the most antiviral inhibitory effects followed by <it>M. charantia</it>. These results were further verified with an <it>in vitro </it>inhibition assay using MTT, in which 113.0% and 98.0% of cell viability were recorded as opposed to 44.6% in DENV-1 infected cells. Although methanolic extracts of <it>O. sanctum </it>and <it>C. citratus </it>showed slight inhibition effect based on CPE, a significant inhibition was not reflected in MTT assay. Methanolic extracts of <it>C. limon </it>and <it>P. citrosum </it>did not prevent cytopathic effects or cell death from DENV-1.</p> <p>Conclusions</p> <p>The methanol extracts of <it>A. paniculata </it>and <it>M. charantia </it>possess the ability of inhibiting the activity of DENV-1 in <it>in vitro </it>assays. Both of these plants are worth to be further investigated and might be advantageous as an alternative for dengue treatment.</p

    Incorporation of a Dietary Omega 3 Fatty Acid Impairs Murine Macrophage Responses to Mycobacterium tuberculosis

    Get PDF
    by creating an immunosuppressive environment. We hypothesized that incorporation of n-3 PUFA suppresses activation of macrophage antimycobacterial responses and favors bacterial growth, in part, by modulating the IFNγ-mediated signaling pathway.. The fatty acid composition of macrophage membranes was modified significantly by DHA treatment. DHA-treated macrophages were less effective in controlling intracellular mycobacteria and showed impaired oxidative metabolism and reduced phagolysosome maturation. Incorporation of DHA resulted in defective macrophage activation, as characterized by reduced production of pro-inflammatory cytokines (TNFα, IL-6 and MCP-1), and lower expression of co-stimulatory molecules (CD40 and CD86). DHA treatment impaired STAT1 phosphorylation and colocalization of the IFNγ receptor with lipid rafts, without affecting surface expression of IFNγ receptor. in response to activation by IFNγ, by modulation of IFNγ receptor signaling and function, suggesting that n-3 PUFA-enriched diets may have a detrimental effect on host immunity to tuberculosis

    Adaptations to Endosymbiosis in a Cnidarian-Dinoflagellate Association: Differential Gene Expression and Specific Gene Duplications

    Get PDF
    Trophic endosymbiosis between anthozoans and photosynthetic dinoflagellates forms the key foundation of reef ecosystems. Dysfunction and collapse of symbiosis lead to bleaching (symbiont expulsion), which is responsible for the severe worldwide decline of coral reefs. Molecular signals are central to the stability of this partnership and are therefore closely related to coral health. To decipher inter-partner signaling, we developed genomic resources (cDNA library and microarrays) from the symbiotic sea anemone Anemonia viridis. Here we describe differential expression between symbiotic (also called zooxanthellate anemones) or aposymbiotic (also called bleached) A. viridis specimens, using microarray hybridizations and qPCR experiments. We mapped, for the first time, transcript abundance separately in the epidermal cell layer and the gastrodermal cells that host photosynthetic symbionts. Transcriptomic profiles showed large inter-individual variability, indicating that aposymbiosis could be induced by different pathways. We defined a restricted subset of 39 common genes that are characteristic of the symbiotic or aposymbiotic states. We demonstrated that transcription of many genes belonging to this set is specifically enhanced in the symbiotic cells (gastroderm). A model is proposed where the aposymbiotic and therefore heterotrophic state triggers vesicular trafficking, whereas the symbiotic and therefore autotrophic state favors metabolic exchanges between host and symbiont. Several genetic pathways were investigated in more detail: i) a key vitamin K–dependant process involved in the dinoflagellate-cnidarian recognition; ii) two cnidarian tissue-specific carbonic anhydrases involved in the carbon transfer from the environment to the intracellular symbionts; iii) host collagen synthesis, mostly supported by the symbiotic tissue. Further, we identified specific gene duplications and showed that the cnidarian-specific isoform was also up-regulated both in the symbiotic state and in the gastroderm. Our results thus offer new insight into the inter-partner signaling required for the physiological mechanisms of the symbiosis that is crucial for coral health

    Deep sequencing of the Mexican avocado transcriptome, an ancient angiosperm with a high content of fatty acids

    Get PDF
    Background: Avocado (Persea americana) is an economically important tropical fruit considered to be a good source of fatty acids. Despite its importance, the molecular and cellular characterization of biochemical and developmental processes in avocado is limited due to the lack of transcriptome and genomic information. Results: The transcriptomes of seeds, roots, stems, leaves, aerial buds and flowers were determined using different sequencing platforms. Additionally, the transcriptomes of three different stages of fruit ripening (pre-climacteric, climacteric and post-climacteric) were also analyzed. The analysis of the RNAseqatlas presented here reveals strong differences in gene expression patterns between different organs, especially between root and flower, but also reveals similarities among the gene expression patterns in other organs, such as stem, leaves and aerial buds (vegetative organs) or seed and fruit (storage organs). Important regulators, functional categories, and differentially expressed genes involved in avocado fruit ripening were identified. Additionally, to demonstrate the utility of the avocado gene expression atlas, we investigated the expression patterns of genes implicated in fatty acid metabolism and fruit ripening. Conclusions: A description of transcriptomic changes occurring during fruit ripening was obtained in Mexican avocado, contributing to a dynamic view of the expression patterns of genes involved in fatty acid biosynthesis and the fruit ripening process
    corecore