28 research outputs found

    Alimentary fluoride intake in preschool children

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The knowledge of background alimentary fluoride intake in preschool children is of utmost importance for introducing optimal and safe caries preventive measures for both individuals and communities. The aim of this study was to assess the daily fluoride intake analyzing duplicate samples of food and beverages. An attempt was made to calculate the daily intake of fluoride from food and swallowed toothpaste.</p> <p>Methods</p> <p>Daily alimentary fluoride intake was measured in a group of 36 children with an average age of 4.75 years and an average weight of 20.69 kg at baseline, by means of a double plate method. This was repeated after six months. Parents recorded their child's diet over 24 hours and collected duplicated portions of food and beverages received by children during this period. Pooled samples of food and beverages were weighed and solid food samples were homogenized. Fluoride was quantitatively extracted from solid food samples by a microdiffusion method using hexadecyldisiloxane and perchloric acid. The content of fluoride extracted from solid food samples, as well as fluoride in beverages, was measured potentiometrically by means of a fluoride ion selective electrode.</p> <p>Results</p> <p>Average daily fluoride intake at baseline was 0.389 (SD 0.054) mg per day. Six months later it was 0.378 (SD 0.084) mg per day which represents 0.020 (SD 0.010) and 0.018 (SD 0.008) mg of fluoride respectively calculated per kg bw/day.</p> <p>When adding the values of unwanted fluoride intake from the toothpaste shown in the literature (0.17-1.21 mg per day) the estimate of the total daily intake of fluoride amounted to 0.554-1.594 mg/day and recalculated to the child's body weight to 0.027-0.077 mg/kg bw/day.</p> <p>Conclusions</p> <p>In the children studied, observed daily fluoride intake reached the threshold for safe fluoride intake. When adding the potential fluoride intake from swallowed toothpaste, alimentary intake reached the optimum range for daily fluoride intake. These results showed that in preschool children, when trying to maximize the benefit of fluoride in caries prevention and to minimize its risk, caution should be exercised when giving advice on the fluoride containing components of child's diet or prescribing fluoride supplements.</p

    Teeth of the red fox Vulpes vulpes (L., 1758) as a bioindicator in studies on fluoride pollution

    Get PDF
    An examination was made of fluoride content in the mandibular first molars of the permanent teeth of the red fox Vulpes vulpes living in north-west (NW) Poland. The teeth were first dried to a constant weight at 105°C and then ashed. Fluorides were determined potentiometrically, and their concentrations were expressed in dry weight (DW) and ash. The results were used to perform an indirect estimation of fluoride pollution in the examined region of Poland. The collected specimens (n = 35) were classified into one of the three age categories: immature (im, 6–12 months), subadult (subad, from 12 to 20 months) and adult (ad, >20 months). The mean concentrations (geometric mean) of fluoride were similar in the im and subad groups (230 and 296 mg/kg DW and 297 and 385 mg/kg ash, respectively), and significantly smaller than in the ad group (504 and 654 mg/kg, respectively, in DW and ash). Basing on other reports that the ∼400 mg/kg DW concentration of fluoride in bones in the long-lived wild mammals generally reflects the geochemical background, it was found that 57% of the foxes in NW Poland exceeded this value by 9% to 170%. This indirectly reflects a moderate fluoride contamination in the tested region

    The Acid Test of Fluoride: How pH Modulates Toxicity

    Get PDF
    Background: It is not known why the ameloblasts responsible for dental enamel formation are uniquely sensitive to fluoride (F−F^−). Herein, we present a novel theory with supporting data to show that the low pH environment of maturating stage ameloblasts enhances their sensitivity to a given dose of F−F^−. Enamel formation is initiated in a neutral pH environment (secretory stage); however, the pH can fall to below 6.0 as most of the mineral precipitates (maturation stage). Low pH can facilitate entry of F−F^− into cells. Here, we asked if F−F^− was more toxic at low pH, as measured by increased cell stress and decreased cell function. Methodology/Principal Findings: Treatment of ameloblast-derived LS8 cells with F−F^− at low pH reduced the threshold dose of F−F^− required to phosphorylate stress-related proteins, PERK, eIF2α, JNK and c-jun. To assess protein secretion, LS8 cells were stably transduced with a secreted reporter, Gaussia luciferase, and secretion was quantified as a function of F−F^− dose and pH. Luciferase secretion significantly decreased within 2 hr of F−F^− treatment at low pH versus neutral pH, indicating increased functional toxicity. Rats given 100 ppm F−F^− in their drinking water exhibited increased stress-mediated phosphorylation of eIF2α in maturation stage ameloblasts (pH<6.0) as compared to secretory stage ameloblasts (pH∼7.2). Intriguingly, F−F^−-treated rats demonstrated a striking decrease in transcripts expressed during the maturation stage of enamel development (Klk4 and Amtn). In contrast, the expression of secretory stage genes, AmelX, Ambn, Enam and Mmp20, was unaffected. Conclusions: The low pH environment of maturation stage ameloblasts facilitates the uptake of F−F^−, causing increased cell stress that compromises ameloblast function, resulting in dental fluorosis

    Amelogenins in human developing and mature dental pulp.

    No full text
    Amelogenins are a group of heterogenous proteins first identified in developing tooth enamel and reported to be present in odontoblasts. The objective of this study was to elucidate the expression and function of amelogenins in the human dentin-pulp complex. Developing human tooth buds were immunostained for amelogenin, and mRNA was detected by in situ hybridization. The effects of recombinant amelogenins on pulp and papilla cell proliferation were measured by Brd U immunoassay, and differentiation was monitored by alkaline phosphatase expression. Amelogenin protein was found in the forming dentin matrix, and amelogenin mRNA was localized in the dentin, presumably in the odontoblast processes. Proliferation of papilla cells was enhanced by recombinant human amelogenin rH72 (LRAP+ exon 4), while pulp cells responded to both rH72 and rH58 (LRAP), with no effect by rH174. These studies suggest that odontoblasts actively synthesize and secrete amelogenin protein during human tooth development, and that low-molecular-weight amelogenins can enhance pulp cell proliferation
    corecore