283 research outputs found

    MEG resting state functional connectivity in Parkinson's disease related dementia

    Get PDF
    Parkinson's disease (PD) related dementia (PDD) develops in up to 60% of patients, but the pathophysiology is far from being elucidated. Abnormalities of resting state functional connectivity have been reported in Alzheimer's disease (AD). The present study was performed to determine whether PDD is likewise characterized by changes in resting state functional connectivity. MEG recordings were obtained in 13 demented and 13 non-demented PD patients. The synchronization likelihood (SL) was calculated within and between cortical areas in six frequency bands. Compared to non-demented PD, PDD was characterized by lower fronto-temporal SL in the alpha range, lower intertemporal SL in delta, theta and alpha1 bands as well as decreased centro-parietal gamma band synchronization. In addition, higher parieto-occipital synchronization in the alpha2 and beta bands was found in PDD. The observed changes in functional connectivity are reminiscent of changes in AD, and may reflect reduced cholinergic activity and/or loss of cortico-cortical anatomical connections in PDD. © 2008 The Author(s)

    Opening a new window to other worlds with spectropolarimetry

    Get PDF
    A high level of diversity has already been observed among the planets of our own Solar System. As such, one expects extrasolar planets to present a wide range of distinctive features, therefore the characterisation of Earth- and super Earth-like planets is becoming of key importance in scientific research. The SEARCH (Spectropolarimetric Exoplanet AtmospheRe CHaracerisation) mission proposal of this paper represents one possible approach to realising these objectives. The mission goals of SEARCH include the detailed characterisation of a wide variety of exoplanets, ranging from terrestrial planets to gas giants. More specifically, SEARCH will determine atmospheric properties such as cloud coverage, surface pressure and atmospheric composition, and may also be capable of identifying basic surface features. To resolve a planet with a semi major axis of down to 1.4AU and 30pc distant SEARCH will have a mirror system consisting of two segments, with elliptical rim, cut out of a parabolic mirror. This will yield an effective diameter of 9 meters along one axis. A phase mask coronagraph along with an integral spectrograph will be used to overcome the contrast ratio of star to planet light. Such a mission would provide invaluable data on the diversity present in extrasolar planetary systems and much more could be learned from the similarities and differences compared to our own Solar System. This would allow our theories of planetary formation, atmospheric accretion and evolution to be tested, and our understanding of regions such as the outer limit of the Habitable Zone to be further improved.Comment: 23 pages, accepted for publication in Experimental Astronom

    Economic evaluation of posaconazole versus fluconazole prophylaxis in patients with graft-versus-host disease (GVHD) in the Netherlands

    Get PDF
    The objective of this study was to evaluate the cost-effectiveness of posaconazole versus fluconazole for the prevention of invasive fungal infections (IFI) in graft-versus-host disease (GVHD) patients in the Netherlands. A decision analytic model was developed based on a double-blind randomized trial that compared posaconazole with fluconazole antifungal prophylaxis in recipients of allogeneic HSCT with GVHD who were receiving immunosuppressive therapy (Ullmann et al., N Engl J Med 356:335–347, 2007). Clinical events were modeled with chance nodes reflecting probabilities of IFIs, IFI-related death, and death from other causes. Data on life expectancy, quality-of-life, medical resource consumption, and costs were obtained from the literature. The total cost with posaconazole amounted to €9,428 (95% uncertainty interval €7,743–11,388), which is €4,566 (€2,460–6,854) more than those with fluconazole. Posaconazole prophylaxis resulted in 0.17 (0.02–0.36) quality adjusted life year (QALY) gained compared to fluconazole prophylaxis, corresponding to an incremental cost effectiveness ratio (ICER) of €26,225 per QALY gained. A scenario analysis demonstrated that at an increased background IFI risk (from 9% to 15%) the ICER was €13,462 per QALY. Given the underlying data and assumptions, posaconazole prophylaxis is expected to be cost-effective relative to fluconazole in recipients of allogeneic HSCT developing GVHD in the Netherlands. The cost-effectiveness of posaconazole depends on the IFI risk, which can vary by hospital

    A more active lifestyle in persons with a recent spinal cord injury benefits physical fitness and health

    Get PDF
    Study design:A prospective cohort study. Objectives:To study the longitudinal relationship between objectively measured everyday physical activity level, and physical fitness and lipid profile in persons with a recent spinal cord injury (SCI).Setting:A rehabilitation centre in the Netherlands and the participant's home environment. Methods:Data of 30 persons with a recent SCI were collected at the start of active rehabilitation, 3 months later, at discharge from inpatient rehabilitation, and 1 year after discharge. Physical activity level (duration of dynamic activities as % of 24 h) was measured with an accelerometry-based activity monitor. Regarding physical fitness, peak oxygen uptake (VO2peak) and peak power output (POpeak) were determined with a maximal wheelchair exercise test, and upper extremity muscle strength was measured with a handheld dynamometer. Fasting blood samples were taken to determine the lipid profile. Results:An increase in physical activity level was significantly related to an increase in VO2peak and POpeak, and an increase in physical activity level favourably affected the lipid profile. A nonsignificant relation was found with muscle strength. Conclusion:Everyday physical activity seems to have an important role in the fitness and health of persons with a recent SCI. An increase in physical activity level was associated with an increase in physical fitness and with a lower risk of cardiovascular disease.Spinal Cord advance online publication, 6 December 2011; doi:10.1038/sc.2011.152

    The Epstein-Barr Virus G-Protein-Coupled Receptor Contributes to Immune Evasion by Targeting MHC Class I Molecules for Degradation

    Get PDF
    Epstein-Barr virus (EBV) is a human herpesvirus that persists as a largely subclinical infection in the vast majority of adults worldwide. Recent evidence indicates that an important component of the persistence strategy involves active interference with the MHC class I antigen processing pathway during the lytic replication cycle. We have now identified a novel role for the lytic cycle gene, BILF1, which encodes a glycoprotein with the properties of a constitutive signaling G-protein-coupled receptor (GPCR). BILF1 reduced the levels of MHC class I at the cell surface and inhibited CD8+ T cell recognition of endogenous target antigens. The underlying mechanism involves physical association of BILF1 with MHC class I molecules, an increased turnover from the cell surface, and enhanced degradation via lysosomal proteases. The BILF1 protein of the closely related CeHV15 c1-herpesvirus of the Rhesus Old World primate (80% amino acid sequence identity) downregulated surface MHC class I similarly to EBV BILF1. Amongst the human herpesviruses, the GPCR encoded by the ORF74 of the KSHV c2-herpesvirus is most closely related to EBV BILF1 (15% amino acid sequence identity) but did not affect levels of surface MHC class I. An engineered mutant of BILF1 that was unable to activate G protein signaling pathways retained the ability to downregulate MHC class I, indicating that the immune-modulating and GPCR-signaling properties are two distinct functions of BILF1. These findings extend our understanding of the normal biology of an important human pathogen. The discovery of a third EBV lytic cycle gene that cooperates to interfere with MHC class I antigen processing underscores the importance of the need for EBV to be able to evade CD8+ T cell responses during the lytic replication cycle, at a time when such a large number of potential viral targets are expressed

    Multifractal and entropy analysis of resting-state electroencephalography reveals spatial organization in local dynamic functional connectivity

    Get PDF
    Functional connectivity of the brain fluctuates even in resting-state condition. It has been reported recently that fluctuations of global functional network topology and those of individual connections between brain regions expressed multifractal scaling. To expand on these findings, in this study we investigated if multifractality was indeed an inherent property of dynamic functional connectivity (DFC) on the regional level as well. Furthermore, we explored if local DFC showed region-specific differences in its multifractal and entropy-related features. DFC analyses were performed on 62-channel, resting-state electroencephalography recordings of twelve young, healthy subjects. Surrogate data testing verified the true multifractal nature of regional DFC that could be attributed to the presumed nonlinear nature of the underlying processes. Moreover, we found a characteristic spatial distribution of local connectivity dynamics, in that frontal and occipital regions showed stronger long-range correlation and higher degree of multifractality, whereas the highest values of entropy were found over the central and temporal regions. The revealed topology reflected well the underlying resting-state network organization of the brain. The presented results and the proposed analysis framework could improve our understanding on how resting-state brain activity is spatio-temporally organized and may provide potential biomarkers for future clinical research

    Evaluation of Cell Cycle Arrest in Estrogen Responsive MCF-7 Breast Cancer Cells: Pitfalls of the MTS Assay

    Get PDF
    Endocrine resistance is a major problem with anti-estrogen treatments and how to overcome resistance is a major concern in the clinic. Reliable measurement of cell viability, proliferation, growth inhibition and death is important in screening for drug treatment efficacy in vitro. This report describes and compares commonly used proliferation assays for induced estrogen-responsive MCF-7 breast cancer cell cycle arrest including: determination of cell number by direct counting of viable cells; or fluorescence SYBR®Green (SYBR) DNA labeling; determination of mitochondrial metabolic activity by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay; assessment of newly synthesized DNA using 5-ethynyl-2′-deoxyuridine (EdU) nucleoside analog binding and Alexa Fluor® azide visualization by fluorescence microscopy; cell-cycle phase measurement by flow cytometry. Treatment of MCF-7 cells with ICI 182780 (Faslodex), FTY720, serum deprivation or induction of the tumor suppressor p14ARF showed inhibition of cell proliferation determined by the Trypan Blue exclusion assay and SYBR DNA labeling assay. In contrast, the effects of treatment with ICI 182780 or p14ARF-induction were not confirmed using the MTS assay. Cell cycle inhibition by ICI 182780 and p14ARF-induction was further confirmed by flow cytometric analysis and EdU-DNA incorporation. To explore this discrepancy further, we showed that ICI 182780 and p14ARF-induction increased MCF-7 cell mitochondrial activity by MTS assay in individual cells compared to control cells thereby providing a misleading proliferation readout. Interrogation of p14ARF-induction on MCF-7 metabolic activity using TMRE assays and high content image analysis showed that increased mitochondrial activity was concomitant with increased mitochondrial biomass with no loss of mitochondrial membrane potential, or cell death. We conclude that, whilst p14ARF and ICI 182780 stop cell cycle progression, the cells are still viable and potential treatments utilizing these pathways may contribute to drug resistant cells. These experiments demonstrate how the combined measurement of metabolic activity and DNA labeling provides a more reliable interpretation of cancer cell response to treatment regimens

    The influence of low-grade glioma on resting state oscillatory brain activity: a magnetoencephalography study

    Get PDF
    Purpose In the present MEG-study, power spectral analysis of oscillatory brain activity was used to compare resting state brain activity in both low-grade glioma (LGG) patients and healthy controls. We hypothesized that LGG patients show local as well as diffuse slowing of resting state brain activity compared to healthy controls and that particularly global slowing correlates with neurocognitive dysfunction. Patient and methods Resting state MEG recordings were obtained from 17 LGG patients and 17 age-, sex-, and education-matched healthy controls. Relative spectral power was calculated in the delta, theta, upper and lower alpha, beta, and gamma frequency band. A battery of standardized neurocognitive tests measuring 6 neurocognitive domains was administered. Results LGG patients showed a slowing of the resting state brain activity when compared to healthy controls. Decrease in relative power was mainly found in the gamma frequency band in the bilateral frontocentral MEG regions, whereas an increase in relative power was found in the theta frequency band in the left parietal region. An increase of the relative power in the theta and lower alpha band correlated with impaired executive functioning, information processing, and working memory. Conclusion LGG patients are characterized by global slowing of their resting state brain activity and this slowing phenomenon correlates with the observed neurocognitive deficits
    corecore