93 research outputs found

    The Evolution of Compact Binary Star Systems

    Get PDF
    We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and BHs are thought to be the primary astrophysical sources of gravitational waves (GWs) within the frequency band of ground-based detectors, while compact binaries of WDs are important sources of GWs at lower frequencies to be covered by space interferometers (LISA). Major uncertainties in the current understanding of properties of NSs and BHs most relevant to the GW studies are discussed, including the treatment of the natal kicks which compact stellar remnants acquire during the core collapse of massive stars and the common envelope phase of binary evolution. We discuss the coalescence rates of binary NSs and BHs and prospects for their detections, the formation and evolution of binary WDs and their observational manifestations. Special attention is given to AM CVn-stars -- compact binaries in which the Roche lobe is filled by another WD or a low-mass partially degenerate helium-star, as these stars are thought to be the best LISA verification binary GW sources.Comment: 105 pages, 18 figure

    SOCS2 Influences LPS Induced Human Monocyte-Derived Dendritic Cell Maturation

    Get PDF
    Dendritic cells (DCs) are highly specific antigen presenting cells, which link innate and adaptive immune responses and participate in protecting hosts from invading pathogens. DCs can be generated in vitro by culturing human monocytes with GM-CSF and IL-4 followed by LPS induced DC maturation. We set out to study the suppressor of cytokine signaling (SOCS) proteins during maturation and activation of human monocyte-derived DCs from peripheral blood in vitro. We found that the expression of SOCS2 mRNA and protein is dramatically up-regulated during DC maturation. Silencing of SOCS2 using siRNA, inhibited DC maturation as evidenced by a decreased expression of maturation markers such as CD83, co-stimulatory molecules CD40, CD86 and HLA-DR. Furthermore, silencing of SOCS2 decreased LPS induced activation of MAP kinases (SAKP/JNK, p38, ERK), IRF3, decreased the translocation of the NF-κB transcription factor and reduced downstream gene mRNA expression. These results suggest a role for SOCS2 in the MyD88-dependent and -independent TLR4 signaling pathways. In conclusion, our results demonstrate that SOCS2 is required for appropriate TLR4 signaling in maturating human DCs via both the MyD88-dependent and -independent signaling pathway

    T cell adhesion and cytolysis of pancreatic cancer cells: a role for E-cadherin in immunotherapy?

    Get PDF
    Pancreatic cancer is an aggressive and potent disease, which is largely resistant to conventional forms of treatment. However, the discovery of antigens associated with pancreatic cancer cells has recently suggested the possibility that immunotherapy might become a specific and effective therapeutic option. T cells within many epithelia, including those of the pancreas, are known to express the αEβ7-integrin adhesion molecule, CD103. The only characterised ligand for CD103 is E-cadherin, an epithelial adhesion molecule which exhibits reduced expression in pancreatic cancer. In our study, CD103 was found to be expressed only by activated T cells following exposure to tumour necrosis factor beta 1, a factor produced by many cancer cells. Significantly, the expression of this integrin was restricted mainly to class I major histocompatibility complex-restricted CD8+ T cells. The human pancreatic cancer cell line Panc-1 was transfected with human E-cadherin in order to generate E-cadherin negative (wild type) and positive (transfected) sub-lines. Using a sensitive flow cytometric adhesion assay it was found that the expression of both CD103 (on T cells) and E-cadherin (on cancer cells) was essential for efficient adhesion of activated T cells to pancreatic cancer cells. This adhesion process was inhibited by the addition of antibodies specific for CD103, thereby demonstrating the importance of the CD103→E-cadherin interaction for T-cell adhesion. Using a 51Cr-release cytotoxicity assay it was found that CD103 expressing T cells lysed E-cadherin expressing Panc-1 target cells following T cell receptor stimulation; addition of antibodies specific for CD103 significantly reduced this lysis. Furthermore, absence of either CD103 from the T cells or E-cadherin expression from the cancer cells resulted in a significant reduction in cancer cell lysis. Therefore, potentially antigenic pancreatic cancer cells could evade a local anti-cancer immune response in vivo as a consequence of their loss of E-cadherin expression; this phenotypic change may also favour metastasis by reducing homotypic adhesion between adjacent cancer cells. We conclude that effective immunotherapy is likely to require upregulation of E-cadherin expression by pancreatic cancer cells or the development of cytotoxic immune cells that are less dependent on this adhesion molecule for efficient effecter function

    The Primary Prevention of PTSD in Firefighters: Preliminary Results of an RCT with 12-Month Follow-Up

    Get PDF
    AIM: To develop and evaluate an evidence-based and theory driven program for the primary prevention of Post-traumatic Stress Disorder (PTSD). DESIGN: A pre-intervention / post-intervention / follow up control group design with clustered random allocation of participants to groups was used. The "control" group received "Training as Usual" (TAU). METHOD: Participants were 45 career recruits within the recruit school at the Department of Fire and Emergency Services (DFES) in Western Australia. The intervention group received a four-hour resilience training intervention (Mental Agility and Psychological Strength training) as part of their recruit training school curriculum. Data was collected at baseline and at 6- and 12-months post intervention. RESULTS: We found no evidence that the intervention was effective in the primary prevention of mental health issues, nor did we find any significant impact of MAPS training on social support or coping strategies. A significant difference across conditions in trauma knowledge is indicative of some impact of the MAPS program. CONCLUSION: While the key hypotheses were not supported, this study is the first randomised control trial investigating the primary prevention of PTSD. Practical barriers around the implementation of this program, including constraints within the recruit school, may inform the design and implementation of similar programs in the future. TRIAL REGISTRATION: Australian New Zealand Clinical Trials Registry (ANZCTR) ACTRN12615001362583

    Extracellular NAD and ATP: Partners in immune cell modulation

    Get PDF
    Extracellular NAD and ATP exert multiple, partially overlapping effects on immune cells. Catabolism of both nucleotides by extracellular enzymes keeps extracellular concentrations low under steady-state conditions and generates metabolites that are themselves signal transducers. ATP and its metabolites signal through purinergic P2 and P1 receptors, whereas extracellular NAD exerts its effects by serving as a substrate for ADP-ribosyltransferases (ARTs) and NAD glycohydrolases/ADPR cyclases like CD38 and CD157. Both nucleotides activate the P2X7 purinoceptor, although by different mechanisms and with different characteristics. While ATP activates P2X7 directly as a soluble ligand, activation via NAD occurs by ART-dependent ADP-ribosylation of cell surface proteins, providing an immobilised ligand. P2X7 activation by either route leads to phosphatidylserine exposure, shedding of CD62L, and ultimately to cell death. Activation by ATP requires high micromolar concentrations of nucleotide and is readily reversible, whereas NAD-dependent stimulation begins at low micromolar concentrations and is more stable. Under conditions of cell stress or inflammation, ATP and NAD are released into the extracellular space from intracellular stores by lytic and non-lytic mechanisms, and may serve as ‘danger signals–to alert the immune response to tissue damage. Since ART expression is limited to naïve/resting T cells, P2X7-mediated NAD-induced cell death (NICD) specifically targets this cell population. In inflamed tissue, NICD may inhibit bystander activation of unprimed T cells, reducing the risk of autoimmunity. In draining lymph nodes, NICD may eliminate regulatory T cells or provide space for the preferential expansion of primed cells, and thus help to augment an immune response

    P2 purinergic receptor modulation of cytokine production

    Get PDF
    Cytokines serve important functions in controlling host immunity. Cells involved in the synthesis of these polypeptide mediators have evolved highly regulated processes to ensure that production is carefully balanced. In inflammatory and immune disorders, however, mis-regulation of the production and/or activity of cytokines is recognized as a major contributor to the disease process, and therapeutics that target individual cytokines are providing very effective treatment options in the clinic. Leukocytes are the principle producers of a number of key cytokines, and these cells also express numerous members of the purinergic P2 receptor family. Studies in several cellular systems have provided evidence that P2 receptor modulation can affect cytokine production, and mechanistic features of this regulation have emerged. This review highlights three separate examples corresponding to (1) P2Y6 receptor mediated impact on interleukin (IL)-8 production, (2) P2Y11 receptor-mediated affects on IL-12/23 output, and (3) P2X7 receptor mediated IL-1β posttranslational processing. These examples demonstrate important roles of purinergic receptors in the modulation of cytokine production. Extension of these cellular observations to in vivo situations may lead to new therapeutic strategies for treating cytokine-mediated diseases

    Theories in Business and Information Systems Engineering

    Get PDF
    Even though the idea of science enjoys an impressive reputation, there seems to be no precise conception of science. On the one hand, there is no unified definition of the extension of activities subsumed under the notion of science. According to the narrow conception that is common in Anglo-Saxon countries, science is restricted to those disciplines that investigate nature and aim at explanation and prediction of natural phenomena. A wider conception that can be found in various European countries includes social sciences, the humanities and engineering. On the other hand and related to the first aspect, there is still no general consensus on the specific characteristics of scientific discoveries and scientific knowledge

    Neuroprotection by adenosine in the brain: From A1 receptor activation to A2A receptor blockade

    Get PDF
    Adenosine is a neuromodulator that operates via the most abundant inhibitory adenosine A1 receptors (A1Rs) and the less abundant, but widespread, facilitatory A2ARs. It is commonly assumed that A1Rs play a key role in neuroprotection since they decrease glutamate release and hyperpolarize neurons. In fact, A1R activation at the onset of neuronal injury attenuates brain damage, whereas its blockade exacerbates damage in adult animals. However, there is a down-regulation of central A1Rs in chronic noxious situations. In contrast, A2ARs are up-regulated in noxious brain conditions and their blockade confers robust brain neuroprotection in adult animals. The brain neuroprotective effect of A2AR antagonists is maintained in chronic noxious brain conditions without observable peripheral effects, thus justifying the interest of A2AR antagonists as novel protective agents in neurodegenerative diseases such as Parkinson’s and Alzheimer’s disease, ischemic brain damage and epilepsy. The greater interest of A2AR blockade compared to A1R activation does not mean that A1R activation is irrelevant for a neuroprotective strategy. In fact, it is proposed that coupling A2AR antagonists with strategies aimed at bursting the levels of extracellular adenosine (by inhibiting adenosine kinase) to activate A1Rs might constitute the more robust brain neuroprotective strategy based on the adenosine neuromodulatory system. This strategy should be useful in adult animals and especially in the elderly (where brain pathologies are prevalent) but is not valid for fetus or newborns where the impact of adenosine receptors on brain damage is different

    Purinergic signalling and immune cells

    Get PDF
    This review article provides a historical perspective on the role of purinergic signalling in the regulation of various subsets of immune cells from early discoveries to current understanding. It is now recognised that adenosine 5'-triphosphate (ATP) and other nucleotides are released from cells following stress or injury. They can act on virtually all subsets of immune cells through a spectrum of P2X ligand-gated ion channels and G protein-coupled P2Y receptors. Furthermore, ATP is rapidly degraded into adenosine by ectonucleotidases such as CD39 and CD73, and adenosine exerts additional regulatory effects through its own receptors. The resulting effect ranges from stimulation to tolerance depending on the amount and time courses of nucleotides released, and the balance between ATP and adenosine. This review identifies the various receptors involved in the different subsets of immune cells and their effects on the function of these cells
    corecore