1,191 research outputs found

    Multiple stressors: using the honeybee model BEEHAVE to explore how spatial and temporal forage stress affects colony resilience

    Get PDF
    The causes underlying the increased mortality of honeybee colonies (Apis mellifera) observed over the past decade remain unclear. Since so far the evidence for monocausal explanations is equivocal, involvement of multiple stressors is generally assumed. We here focus on various aspects of forage availability, which have received less attention than other stressors because it is virtually impossible to explore them empirically. We applied the colony model BEEHAVE, which links within-hive dynamics and foraging, to stylized landscape settings to explore how foraging distance, forage supply, and “forage gaps”, i.e. periods in which honeybees cannot find any nectar and pollen, affect colony resilience and the mechanisms behind. We found that colony extinction was mainly driven by foraging distance, but the timing of forage gaps had strongest effects on time to extinction. Sensitivity to forage gaps of 15 days was highest in June or July even if otherwise forage availability was sufficient to survive. Forage availability affected colonies via cascading effects on queen's egg-laying rate, reduction of new-emerging brood stages developing into adult workers, pollen debt, lack of workforce for nursing, and reduced foraging activity. Forage gaps in July led to reduction in egg-laying and increased mortality of brood stages at a time when the queen's seasonal egg-laying rate is at its maximum, leading to colony failure over time. Our results demonstrate that badly timed forage gaps interacting with poor overall forage supply reduce honeybee colony resilience. Existing regulation mechanisms which in principle enable colonies to cope with varying forage supply in a given landscape and year, such as a reduction in egg-laying, have only a certain capacity. Our results are hypothetical, as they are obtained from simplified landscape settings, but they are consistent with existing empirical knowledge. They offer ample opportunities for testing the predicted effects of forage stress in controlled experiments

    REVIEW: Towards a systems approach for understanding honeybee decline: a stocktaking and synthesis of existing models

    Get PDF
    Published© 2013 The Authors. Journal of Applied Ecology © 2013 British Ecological Society This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.Summary 1. The health of managed and wild honeybee colonies appears to have declined substantially in Europe and the United States over the last decade. Sustainability of honeybee colonies is important not only for honey production, but also for pollination of crops and wild plants alongside other insect pollinators. A combination of causal factors, including parasites, pathogens, land use changes and pesticide usage, are cited as responsible for the increased colony mortality. 2. However, despite detailed knowledge of the behaviour of honeybees and their colonies, there are no suitable tools to explore the resilience mechanisms of this complex system under stress. Empirically testing all combinations of stressors in a systematic fashion is not feasible. We therefore suggest a cross-level systems approach, based on mechanistic modelling, to investigate the impacts of (and interactions between) colony and land management. 3. We review existing honeybee models that are relevant to examining the effects of different stressors on colony growth and survival. Most of these models describe honeybee colony dynamics, foraging behaviour or honeybee – varroa mite – virus interactions. 4. We found that many, but not all, processes within honeybee colonies, epidemiology and foraging are well understood and described in the models, but there is no model that couples in-hive dynamics and pathology with foraging dynamics in realistic landscapes. 5. Synthesis and applications. We describe how a new integrated model could be built to simulate multifactorial impacts on the honeybee colony system, using building blocks from the reviewed models. The development of such a tool would not only highlight empirical research priorities but also provide an important forecasting tool for policy makers and beekeepers, and we list examples of relevant applications to bee disease and landscape management decisions.Biotechnology and Biological Sciences Research Council (BBSRC

    A review of the success of the UK strategy to tackle the invasive insect Vespa velutina nigrithorax, the “Asian hornet”

    Get PDF
    Interreg Atlantic Area project: Atlantic Positive – Conservation of Atlantic Pollination services and control of the invasive species Vespa velutina. Work-package 8; Action No. 1: Strategy to prevent the spread of V. velutina to the UK. To prevent Vespa velutina from spreading across the British mainland, avoiding economic loss and harm to biodiversity, this report describes action plans and specific measures for the British mainland and the maritime space between UK and mainland Europe.The UK’s strategy to prevent the establishment of the Asian hornet, Vespa velutina nigrithorax, and/or manage its presence and impacts is embedded within the UK’s generic strategy for invasive non-native species, but specifically informed by the non-native species risk assessment for Vespa velutina and the pest-specific contingency plan for the Asian hornet. This report introduces relevant UK policies and legislation for invasive non-native species, before summarising the UK’s assessment of risk of entry, establishment and impact, and its rapid response plans addressing the Asian hornet’s periodic incursions in the UK. The report describes the effectiveness of those plans to manage and control the spread of the Asian hornet on the British mainland over the last seven years; and provides a reflection on the next steps required to ensure establishment is delayed as long as possible, while preparing for a time when the species may become established in the UK. The details may provide useful pointers for other European countries in which the Asian hornet is not yet established, but also incorporates suggestions for the UK based on actions from regions where the hornet has already become established.European Regional Development Fund (ERDF) Interreg Atlantic Area ProgrammeBiotechnology and Biological Sciences Research Council (BBSRC

    Searching for nests of the invasive Asian hornet (Vespa velutina) using radio-telemetry

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this recordAsian hornets (Vespa velutina) are voracious predators of bees, and are the latest emerging threat to managed and wild pollinator populations in Europe. To prevent establishment or reduce the rate of spread of V. velutina, early detection and destruction of nests is considered the only option. Detection is difficult as their nests are well hidden and flying hornets are difficult to follow over long distances. We address this challenge by tracking individual V. velutina workers flying back to their nests using radio telemetry for the first time, finding five previously undiscovered nests, up to 1.33 km from hornet release points. Hornets can fly with 0.28 g tags if the tag:hornet ratio is less than 0.8. This method offers a step-change in options to tackle the spread of this invader, providing an efficient means of finding V. velutina nests in complex environments to manage this emerging threat to pollinators.We thank Olivier Bonnard for discussions, sourcing materials, and advice on locating foraging V. velutina workers at INRA Bordeaux-Aquitaine. We also thank members of Jersey Beekeeping Association for their assistance in catching V. velutina workers in Jersey. The work was funded by a Defra research project grant (PH0532), with additional support by the States of Jersey Department of Environment and generous philanthropic donations by the South West Beekeeping Associations’ Forum (SWBKF), Somerset Beekeeping Association, Dorset Beekeeping Association, Cornwall Beekeeping Association, West Cornwall Beekeeping Association, Devon Beekeeping Association, Bournemouth & South Dorset Beekeeping Association, and B.J. Sherriff. We are grateful to INRA Bordeaux-Aquitaine, States of Jersey Department of Environment, and Durrell Wildlife Park for their welcome and permission to use facilities at their institutions

    Predicting honeybee colony failure: using the BEEHAVE model to simulate colony responses to pesticides

    Get PDF
    PublishedJournal ArticleResearch Support, Non-U.S. Gov'tTo simulate effects of pesticides on different honeybee (Apis mellifera L.) life stages, we used the BEEHAVE model to explore how increased mortalities of larvae, in-hive workers, and foragers, as well as reduced egg-laying rate, could impact colony dynamics over multiple years. Stresses were applied for 30 days, both as multiples of the modeled control mortality and as set percentage daily mortalities to assess the sensitivity of the modeled colony both to small fluctuations in mortality and periods of low to very high daily mortality. These stresses simulate stylized exposure of the different life stages to nectar and pollen contaminated with pesticide for 30 days. Increasing adult bee mortality had a much greater impact on colony survival than mortality of bee larvae or reduction in egg laying rate. Importantly, the seasonal timing of the imposed mortality affected the magnitude of the impact at colony level. In line with the LD50, we propose a new index of "lethal imposed stress": the LIS50 which indicates the level of stress on individuals that results in 50% colony mortality. This (or any LISx) is a comparative index for exploring the effects of different stressors at colony level in model simulations. While colony failure is not an acceptable protection goal, this index could be used to inform the setting of future regulatory protection goals.J.R. was funded to do this work on an Industrial CASE PhD studentship funded by the Biology and Biotechnology Sciences Research Council of the UK (BBSRC), and Syngenta. J.O., M.B., and P.K. were supported on BBSRC project BB/K014463/

    BEEHAVE: A systems model of honeybee colony dynamics and foraging to explore multifactorial causes of colony failure

    Get PDF
    Journal Article© 2014 The Authors. Journal of Applied Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly citedSummary: A notable increase in failure of managed European honeybee Apis mellifera L. colonies has been reported in various regions in recent years. Although the underlying causes remain unclear, it is likely that a combination of stressors act together, particularly varroa mites and other pathogens, forage availability and potentially pesticides. It is experimentally challenging to address causality at the colony scale when multiple factors interact. In silico experiments offer a fast and cost-effective way to begin to address these challenges and inform experiments. However, none of the published bee models combine colony dynamics with foraging patterns and varroa dynamics. We have developed a honeybee model, BEEHAVE, which integrates colony dynamics, population dynamics of the varroa mite, epidemiology of varroa-transmitted viruses and allows foragers in an agent-based foraging model to collect food from a representation of a spatially explicit landscape. We describe the model, which is freely available online (www.beehave-model.net). Extensive sensitivity analyses and tests illustrate the model's robustness and realism. Simulation experiments with various combinations of stressors demonstrate, in simplified landscape settings, the model's potential: predicting colony dynamics and potential losses with and without varroa mites under different foraging conditions and under pesticide application. We also show how mitigation measures can be tested. Synthesis and applications. BEEHAVE offers a valuable tool for researchers to design and focus field experiments, for regulators to explore the relative importance of stressors to devise management and policy advice and for beekeepers to understand and predict varroa dynamics and effects of management interventions. We expect that scientists and stakeholders will find a variety of applications for BEEHAVE, stimulating further model development and the possible inclusion of other stressors of potential importance to honeybee colony dynamics. © 2014 The Authors. Journal of Applied Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.Biotechnology and Biological Sciences Research Council (BBSRC

    Modelling Oscillator synchronisation during vertebrate axis segmentation

    Get PDF
    he somitogenesis clock regulates the periodicity with which somites form in the posterior pre-somitic mesoderm. Whilst cell heterogeneity results in noisy oscillation rates amongst constituent cells, synchrony within the population is maintained as oscillators are entrained via juxtracine signalling mechanisms. Here we consider a population of phase-coupled oscillators and investigate how biologically motivated perturbations to the entrained state can perturb synchrony within the population. We find that the ratio of mitosis length to clock period can influence levels of desynchronisation. Moreover, we observe that random cell movement, and hence change of local neighbourhoods, increases synchronisation

    Evolution of leaf-form in land plants linked to atmospheric CO2 decline in the Late Palaeozoic era

    Get PDF
    The widespread appearance of megaphyll leaves, with their branched veins and planate form, did not occur until the close of the Devonian period at about 360 Myr ago. This happened about 40 Myr after simple leafless vascular plants first colonized the land in the Late Silurian/Early Devonian, but the reason for the slow emergence of this common feature of present-day plants is presently unresolved. Here we show, in a series of quantitative analyses using fossil leaf characters and biophysical principles, that the delay was causally linked with a 90% drop in atmospheric pCO2 during the Late Palaeozoic era. In contrast to simulations for a typical Early Devonian land plant, possessing few stomata on leafless stems, those for a planate leaf with the same stomatal characteristics indicate that it would have suffered lethal overheating, because of greater interception of solar energy and low transpiration. When planate leaves first appeared in the Late Devonian and subsequently diversified in the Carboniferous period, they possessed substantially higher stomatal densities. This observation is consistent with the effects of the pCO2 on stomatal development and suggests that the evolution of planate leaves could only have occurred after an increase in stomatal density, allowing higher transpiration rates that were sufficient to maintain cool and viable leaf temperatures

    lp-Recovery of the Most Significant Subspace among Multiple Subspaces with Outliers

    Full text link
    We assume data sampled from a mixture of d-dimensional linear subspaces with spherically symmetric distributions within each subspace and an additional outlier component with spherically symmetric distribution within the ambient space (for simplicity we may assume that all distributions are uniform on their corresponding unit spheres). We also assume mixture weights for the different components. We say that one of the underlying subspaces of the model is most significant if its mixture weight is higher than the sum of the mixture weights of all other subspaces. We study the recovery of the most significant subspace by minimizing the lp-averaged distances of data points from d-dimensional subspaces, where p>0. Unlike other lp minimization problems, this minimization is non-convex for all p>0 and thus requires different methods for its analysis. We show that if 0<p<=1, then for any fraction of outliers the most significant subspace can be recovered by lp minimization with overwhelming probability (which depends on the generating distribution and its parameters). We show that when adding small noise around the underlying subspaces the most significant subspace can be nearly recovered by lp minimization for any 0<p<=1 with an error proportional to the noise level. On the other hand, if p>1 and there is more than one underlying subspace, then with overwhelming probability the most significant subspace cannot be recovered or nearly recovered. This last result does not require spherically symmetric outliers.Comment: This is a revised version of the part of 1002.1994 that deals with single subspace recovery. V3: Improved estimates (in particular for Lemma 3.1 and for estimates relying on it), asymptotic dependence of probabilities and constants on D and d and further clarifications; for simplicity it assumes uniform distributions on spheres. V4: minor revision for the published versio

    Gaia Data Release 2: processing of the photometric data

    Get PDF
    CONTEXT. The second Gaia data release is based on 22 months of mission data with an average of 0.9 billion individual CCD observations per day. A data volume of this size and granularity requires a robust and reliable but still flexible system to achieve the demanding accuracy and precision constraints that Gaia is capable of delivering. AIMS. We aim to describe the input data, the treatment of blue photometer/red photometer (BP/RP) low–resolution spectra required to produce the integrated GBP and GRP fluxes, the process used to establish the internal Gaia photometric system, and finally, the generation of the mean source photometry from the calibrated epoch data for Gaia DR2. METHODS. The internal Gaia photometric system was initialised using an iterative process that is solely based on Gaia data. A set of calibrations was derived for the entire Gaia DR2 baseline and then used to produce the final mean source photometry. The photometric catalogue contains 2.5 billion sources comprised of three different grades depending on the availability of colour information and the procedure used to calibrate them: 1.5 billion gold, 144 million silver, and 0.9 billion bronze. These figures reflect the results of the photometric processing; the content of the data release will be different due to the validation and data quality filters applied during the catalogue preparation. The photometric processing pipeline, PhotPipe, implements all the processing and calibration workflows in terms of Map/Reduce jobs based on the Hadoop platform. This is the first example of a processing system for a large astrophysical survey project to make use of these technologies. RESULTS. The improvements in the generation of the integrated G–band fluxes, in the attitude modelling, in the cross–matching, and and in the identification of spurious detections led to a much cleaner input stream for the photometric processing. This, combined with the improvements in the definition of the internal photometric system and calibration flow, produced high-quality photometry. Hadoop proved to be an excellent platform choice for the implementation of PhotPipe in terms of overall performance, scalability, downtime, and manpower required for operations and maintenance
    • …
    corecore