39 research outputs found

    Consumer input into research: the Australian Cancer Trials website

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Australian Cancer Trials website (ACTO) was publicly launched in 2010 to help people search for cancer clinical trials recruiting in Australia, provide information about clinical trials and assist with doctor-patient communication about trials. We describe consumer involvement in the design and development of ACTO and report our preliminary patient evaluation of the website.</p> <p>Methods</p> <p>Consumers, led by Cancer Voices NSW, provided the impetus to develop the website. Consumer representative groups were consulted by the research team during the design and development of ACTO which combines a search engine, trial details, general information about trial participation and question prompt lists. Website use was analysed. A patient evaluation questionnaire was completed at one hospital, one week after exposure to the website.</p> <p>Results</p> <p>ACTO's main features and content reflect consumer input. In February 2011, it covered 1, 042 cancer trials. Since ACTO's public launch in November 2010, until the end of February 2011, the website has had 2, 549 new visits and generated 17, 833 page views. In a sub-study of 47 patient users, 89% found the website helpful for learning about clinical trials and all respondents thought patients should have access to ACTO.</p> <p>Conclusions</p> <p>The development of ACTO is an example of consumers working with doctors, researchers and policy makers to improve the information available to people whose lives are affected by cancer and to help them participate in their treatment decisions, including consideration of clinical trial enrolment. Consumer input has ensured that the website is informative, targets consumer priorities and is user-friendly. ACTO serves as a model for other health conditions.</p

    Modes of Aβ toxicity in Alzheimer’s disease

    Get PDF
    Alzheimer’s disease (AD) is reaching epidemic proportions, yet a cure is not yet available. While the genetic causes of the rare familial inherited forms of AD are understood, the causes of the sporadic forms of the disease are not. Histopathologically, these two forms of AD are indistinguishable: they are characterized by amyloid-β (Aβ) peptide-containing amyloid plaques and tau-containing neurofibrillary tangles. In this review we compare AD to frontotemporal dementia (FTD), a subset of which is characterized by tau deposition in the absence of overt plaques. A host of transgenic animal AD models have been established through the expression of human proteins with pathogenic mutations previously identified in familial AD and FTD. Determining how these mutant proteins cause disease in vivo should contribute to an understanding of the causes of the more frequent sporadic forms. We discuss the insight transgenic animal models have provided into Aβ and tau toxicity, also with regards to mitochondrial function and the crucial role tau plays in mediating Aβ toxicity. We also discuss the role of miRNAs in mediating the toxic effects of the Aβ peptide

    Characterization of a variant of gap junction protein α8 identified in a family with hereditary cataract

    No full text
    Congenital cataracts occur in isolation in about 70% of cases or are associated with other abnormalities such as anterior segment dysgenesis and microphthalmia. We identified a three-generation family in the University of California San Francisco glaucoma clinic comprising three individuals with congenital cataracts and aphakic glaucoma, one of whom also had microphthalmia. The purpose of this study was to identify a possible causative mutation in this family and to investigate its pathogenesis.We performed exome sequencing and identified a putative mutation in gap junction protein α8 (GJA8). We used PCR and DNA sequencing of GJA8 in affected and unaffected members of the pedigree to test segregation of the variant with the phenotype. We tested cellular distribution and function of the variant protein by immunofluorescence and intercellular transfer of Neurobiotin in transiently transfected HeLa cells.Exome sequencing revealed a variant in GJA8 (c.658A>G) encoding connexin50 (Cx50) that resulted in a missense change (p.N220D) in transmembrane domain 4. The variant was present in all three affected family members, but was also present in the proband's grandfather who was reported to be unaffected. The mutant protein localized to the plasma membrane and supported intercellular Neurobiotin transfer in HeLa cells.We identified a variant in transmembrane domain 4 of Cx50 in a family with autosomal dominant congenital cataracts. This variant has been previously identified in other cataract cohorts, but it is also present in unaffected individuals. Our study demonstrates that the mutant protein localized to the plasma membrane and formed functional intercellular channels. These data suggest that GJA8 c.658A>G is most likely a benign rare variant
    corecore