6,841 research outputs found

    Hormad1 mutation disrupts synaptonemal complex formation, recombination, and chromosome segregation in mammalian meiosis

    Get PDF
    Meiosis is unique to germ cells and essential for reproduction. During the first meiotic division, homologous chromosomes pair, recombine, and form chiasmata. The homologues connect via axial elements and numerous transverse filaments to form the synaptonemal complex. The synaptonemal complex is a critical component for chromosome pairing, segregation, and recombination. We previously identified a novel germ cell-specific HORMA domain encoding gene, Hormad1, a member of the synaptonemal complex and a mammalian counterpart to the yeast meiotic HORMA domain protein Hop1. Hormad1 is essential for mammalian gametogenesis as knockout male and female mice are infertile. Hormad1 deficient (Hormad1-/-) testes exhibit meiotic arrest in the early pachytene stage, and synaptonemal complexes cannot be visualized by electron microscopy. Hormad1 deficiency does not affect localization of other synaptonemal complex proteins, SYCP2 and SYCP3, but disrupts homologous chromosome pairing. Double stranded break formation and early recombination events are disrupted in Hormad1-/- testes and ovaries as shown by the drastic decrease in the γH2AX, DMC1, RAD51, and RPA foci. HORMAD1 co-localizes with cH2AX to the sex body during pachytene. BRCA1, ATR, and γH2AX co-localize to the sex body and participate in meiotic sex chromosome inactivation and transcriptional silencing. Hormad1 deficiency abolishes γH2AX, ATR, and BRCA1 localization to the sex chromosomes and causes transcriptional de-repression on the X chromosome. Unlike testes, Hormad1-/- ovaries have seemingly normal ovarian folliculogenesis after puberty. However, embryos generated from Hormad1-/- oocytes are hyper- and hypodiploid at the 2 cell and 8 cell stage, and they arrest at the blastocyst stage. HORMAD1 is therefore a critical component of the synaptonemal complex that affects synapsis, recombination, and meiotic sex chromosome inactivation and transcriptional silencing. © 2010 Shin et al

    Growth and dislocation studies of β-HMX

    Get PDF
    Background: The defect structure of organic materials is important as it plays a major role in their crystal growth properties. It also can play a subcritical role in “hot-spot” detonation processes of energetics and one such energetic is cyclotetramethylene-tetranitramine, in the commonly used beta form (β-HMX). Results: The as-grown crystals grown by evaporation from acetone show prismatic, tabular and columnar habits, all with {011}, {110}, (010) and (101) faces. Etching on (010) surfaces revealed three different types of etch pits, two of which could be identified with either pure screw or pure edge dislocations, the third is shown to be an artifact of the twinning process that this material undergoes. Examination of the {011} and {110} surfaces show only one type of etch pit on each surface; however their natural asymmetry precludes the easy identification of their Burgers vector or dislocation type. Etching of cleaved {011} surfaces demonstrates that the etch pits can be associated with line dislocations. All dislocations appear randomly on the crystal surfaces and do not form alignments characteristic of mechanical deformation by dislocation slip. Conclusions: Crystals of β-HMX grown from acetone show good morphological agreement with that predicted by modelling, with three distinct crystal habits observed depending upon the supersaturation of the growth solution. Prismatic habit was favoured at low supersaturation, while tabular and columnar crystals were predominant at higher super saturations. The twin plane in β-HMX was identified as a (101) reflection plane. The low plasticity of β-HMX is shown by the lack of etch pit alignments corresponding to mechanically induced dislocation arrays. On untwinned {010} faces, two types of dislocations exist, pure edge dislocations with b = [010] and pure screw dislocations with b = [010]. On twinned (010) faces, a third dislocation type exists and it is proposed that these pits are associated with pure screw dislocations with b = [010]

    Effects of local hypothermia-rewarming on physiology, metabolism and inflammation of acutely injured human spinal cord.

    Get PDF
    In five patients with acute, severe thoracic traumatic spinal cord injuries (TSCIs), American spinal injuries association Impairment Scale (AIS) grades A-C, we induced cord hypothermia (33 °C) then rewarming (37 °C). A pressure probe and a microdialysis catheter were placed intradurally at the injury site to monitor intraspinal pressure (ISP), spinal cord perfusion pressure (SCPP), tissue metabolism and inflammation. Cord hypothermia-rewarming, applied to awake patients, did not cause discomfort or neurological deterioration. Cooling did not affect cord physiology (ISP, SCPP), but markedly altered cord metabolism (increased glucose, lactate, lactate/pyruvate ratio (LPR), glutamate; decreased glycerol) and markedly reduced cord inflammation (reduced IL1β, IL8, MCP, MIP1α, MIP1β). Compared with pre-cooling baseline, rewarming was associated with significantly worse cord physiology (increased ICP, decreased SCPP), cord metabolism (increased lactate, LPR; decreased glucose, glycerol) and cord inflammation (increased IL1β, IL8, IL4, IL10, MCP, MIP1α). The study was terminated because three patients developed delayed wound infections. At 18-months, two patients improved and three stayed the same. We conclude that, after TSCI, hypothermia is potentially beneficial by reducing cord inflammation, though after rewarming these benefits are lost due to increases in cord swelling, ischemia and inflammation. We thus urge caution when using hypothermia-rewarming therapeutically in TSCI

    Mean-Payoff Optimization in Continuous-Time Markov Chains with Parametric Alarms

    Full text link
    Continuous-time Markov chains with alarms (ACTMCs) allow for alarm events that can be non-exponentially distributed. Within parametric ACTMCs, the parameters of alarm-event distributions are not given explicitly and can be subject of parameter synthesis. An algorithm solving the ε\varepsilon-optimal parameter synthesis problem for parametric ACTMCs with long-run average optimization objectives is presented. Our approach is based on reduction of the problem to finding long-run average optimal strategies in semi-Markov decision processes (semi-MDPs) and sufficient discretization of parameter (i.e., action) space. Since the set of actions in the discretized semi-MDP can be very large, a straightforward approach based on explicit action-space construction fails to solve even simple instances of the problem. The presented algorithm uses an enhanced policy iteration on symbolic representations of the action space. The soundness of the algorithm is established for parametric ACTMCs with alarm-event distributions satisfying four mild assumptions that are shown to hold for uniform, Dirac and Weibull distributions in particular, but are satisfied for many other distributions as well. An experimental implementation shows that the symbolic technique substantially improves the efficiency of the synthesis algorithm and allows to solve instances of realistic size.Comment: This article is a full version of a paper accepted to the Conference on Quantitative Evaluation of SysTems (QEST) 201

    Mechanical ventilation using non-injurious ventilation settings causes lung injury in the absence of pre-existing lung injury in healthy mice

    Get PDF
    INTRODUCTION: Mechanical ventilation (MV) may cause ventilator-induced lung injury (VILI). Present models of VILI use exceptionally large tidal volumes, causing gross lung injury and haemodynamic shock. In addition, animals are ventilated for a relative short period of time and only after a 'priming' pulmonary insult. Finally, it is uncertain whether metabolic acidosis, which frequently develops in models of VILI, should be prevented. To study VILI in healthy mice, the authors used a MV model with clinically relevant ventilator settings, avoiding massive damage of lung structures and shock, and preventing metabolic acidosis. METHODS: Healthy C57Bl/6 mice (n = 66) or BALB/c mice (n = 66) were ventilated (tidal volume = 7.5 ml/kg or 15 ml/kg; positive end-expiratory pressure = 2 cmH2O; fraction of inspired oxygen = 0.5) for five hours. Normal saline or sodium bicarbonate were used to correct for hypovolaemia. Lung histopathology, lung wet-to-dry ratio, bronchoalveolar lavage fluid protein content, neutrophil influx and levels of proinflammatory cytokines and coagulation factors were measured. RESULTS: Animals remained haemodynamically stable throughout the whole experiment. Lung histopathological changes were minor, although significantly more histopathological changes were found after five hours of MV with a larger tidal volume. Lung histopathological changes were no different between the strains. In both strains and with both ventilator settings, MV caused higher wet-to-dry ratios, higher bronchoalveolar lavage fluid protein levels and more influx of neutrophils, and higher levels of proinflammatory cytokines and coagulation factors. Also, with MV higher systemic levels of cytokines were measured. All parameters were higher with larger tidal volumes. Correcting for metabolic acidosis did not alter endpoints. CONCLUSIONS: MV induces VILI, in the absence of a priming pulmonary insult and even with use of relevant (least injurious) ventilator settings. This model offers opportunities to study the pathophysiological mechanisms behind VILI and the contribution of MV to lung injury in the absence of pre-existing lung injury

    Two-loop RGEs with Dirac gaugino masses

    Get PDF
    The set of renormalisation group equations to two loop order for general supersymmetric theories broken by soft and supersoft operators is completed. As an example, the explicit expressions for the RGEs in a Dirac gaugino extension of the (N)MSSM are presented.Comment: 10 pages + 24 pages of RGEs in appendix; no figure

    Structure-activity relationships for analogs of the tuberculosis drug bedaquiline with the naphthalene unit replaced by bicyclic heterocycles

    Get PDF
    Replacing the naphthalene C-unit of the anti-tuberculosis drug bedaquiline with a range of bicyclic heterocycles of widely differing lipophilicity gave analogs with a 4.5-fold range in clogP values. The biological results for these compounds indicate on average a lower clogP limit of about 5.0 in this series for retention of potent inhibitory activity (MIC90s) against M.tb in culture. Some of the compounds also showed a significant reduction in inhibition of hERG channel potassium current compared with bedaquiline, but there was no common structural feature that distinguished these

    A multi-centre qualitative study exploring the experiences of UK South Asian and White Diabetic Patients referred for renal care

    Get PDF
    Background An exploration of renal complications of diabetes from the patient perspective is important for developing quality care through the diabetic renal disease care pathway. Methods Newly referred South Asian and White diabetic renal patients over 16 years were recruited from nephrology outpatient clinics in three UK centres - Luton, West London and Leicester – and their experiences of the diabetes and renal care recorded. A semi-structured qualitative interview was conducted with 48 patients. Interview transcripts were analysed thematically and comparisons made between the White and South Asian groups. Results 23 South Asian patients and 25 White patients were interviewed. Patient experience of diabetes ranged from a few months to 35 years with a mean time since diagnosis of 12.1 years and 17.1 years for the South Asian and White patients respectively. Confusion emerged as a response to referral shared by both groups. This sense of confusion was associated with reported lack of information at the time of referral, but also before referral. Language barriers exacerbated confusion for South Asian patients. Conclusions The diabetic renal patients who have been referred for specialist renal care and found the referral process confusing have poor of awareness of kidney complications of diabetes. Healthcare providers should be more aware of the ongoing information needs of long term diabetics as well as the context of any information exchange including language barriers

    FAS-dependent cell death in α-synuclein transgenic oligodendrocyte models of multiple system atrophy

    Get PDF
    Multiple system atrophy is a parkinsonian neurodegenerative disorder. It is cytopathologically characterized by accumulation of the protein p25α in cell bodies of oligodendrocytes followed by accumulation of aggregated α-synuclein in so-called glial cytoplasmic inclusions. p25α is a stimulator of α-synuclein aggregation, and coexpression of α-synuclein and p25α in the oligodendroglial OLN-t40-AS cell line causes α-synuclein aggregate-dependent toxicity. In this study, we investigated whether the FAS system is involved in α-synuclein aggregate dependent degeneration in oligodendrocytes and may play a role in multiple system atrophy. Using rat oligodendroglial OLN-t40-AS cells we demonstrate that the cytotoxicity caused by coexpressing α-synuclein and p25α relies on stimulation of the death domain receptor FAS and caspase-8 activation. Using primary oligodendrocytes derived from PLP-α-synuclein transgenic mice we demonstrate that they exist in a sensitized state expressing pro-apoptotic FAS receptor, which makes them sensitive to FAS ligand-mediated apoptosis. Immunoblot analysis shows an increase in FAS in brain extracts from multiple system atrophy cases. Immunohistochemical analysis demonstrated enhanced FAS expression in multiple system atrophy brains notably in oligodendrocytes harboring the earliest stages of glial cytoplasmic inclusion formation. Oligodendroglial FAS expression is an early hallmark of oligodendroglial pathology in multiple system atrophy that mechanistically may be coupled to α-synuclein dependent degeneration and thus represent a potential target for protective intervention
    corecore