166 research outputs found

    Divergent responses of viral and bacterial communities in the gut microbiome to dietary disturbances in mice

    Get PDF
    To improve our understanding of the stability of mammalian intestinal communities, we characterized the responses of both bacterial and viral communities in murine fecal samples to dietary changes between high- and low-fat (LF) diets. Targeted DNA extraction methods for bacteria, virus-like particles and induced prophages were used to generate bacterial and viral metagenomes as well as 16S ribosomal RNA amplicons. Gut microbiome communities from two cohorts of C57BL/6 mice were characterized in a 6-week diet perturbation study in response to high fiber, LF and high-refined sugar, milkfat (MF) diets. The resulting metagenomes from induced bacterial prophages and extracellular viruses showed significant overlap, supporting a largely temperate viral lifestyle within these gut microbiomes. The resistance of baseline communities to dietary disturbances was evaluated, and we observed contrasting responses of baseline LF and MF bacterial and viral communities. In contrast to baseline LF viral communities and bacterial communities in both diet treatments, baseline MF viral communities were sensitive to dietary disturbances as reflected in their non-recovery during the washout period. The contrasting responses of bacterial and viral communities suggest that these communities can respond to perturbations independently of each other and highlight the potentially unique role of viruses in gut health

    Plasmin Plays an Essential Role in Amplification of Psoriasiform Skin Inflammation in Mice

    Get PDF
    BACKGROUND: Although increased levels of plasminogen activators have been found in psoriatic lesions, the role of plasmin converted from plasminogen by plasminogen activators in pathogenesis of psoriasis has not been investigated. METHODOLOGY/PRINCIPAL FINDINGS: Here we examined the contribution of plasmin to amplification of inflammation in patients with psoriasis. We found that plasminogen was diminished, but that the amount and activity of its converted product plasmin were markedly increased in psoriasis. Moreover, annexin II, a receptor for plasmin was dramatically increased in both dermis and epidermis in psoriasis. Plasmin at sites of inflammation was pro-inflammatory, eliciting production of inflammatory factors, including CC chemokine ligand 20 (CCL20) and interleukin-23 (IL-23), that was mediated by the nuclear factor-kappaB (NF-ΞΊB) signaling pathway and that had an essential role in the recruitment and activation of pathogenic C-C chemokine receptor type 6 (CCR6)+ T cells. Moreover, intradermal injection of plasmin or plasmin together with recombinant monocyte/macrophage chemotactic protein-1 (MCP-1) resulted in induction of psoriasiform skin inflammation around the injection sites with several aspects of human psoriasis in mice. CONCLUSIONS/SIGNIFICANCE: Plasmin converted from plasminogen by plasminogen activators plays an essential role in amplification of psoriasiform skin inflammation in mice, and targeting plasmin receptor--annexin II--may harbor therapeutic potential for the treatment of human psoriasis

    The DREEM, part 1: measurement of the educational environment in an osteopathy teaching program

    Get PDF
    Background Measurement of the educational environment has become more common in health professional education programs. Information gained from these investigations can be used to implement and measure changes to the curricula, educational delivery and the physical environment. A number of questionnaires exist to measure the educational environment, and the most commonly utilised of these is the Dundee Ready Educational Environment Measure (DREEM). Methods The DREEM was administered to students in all year levels of the osteopathy program at Victoria University (VU), Melbourne, Australia. Students also completed a demographic survey. Inferential and correlational statistics were employed to investigate the educational environment based on the scores obtained from the DREEM. Results A response rate of 90% was achieved. The mean total DREEM score was 135.37 (+/- 19.33) with the scores ranging from 72 to 179. Some subscales and items demonstrated differences for gender, clinical phase, age and whether the student was in receipt of a government allowance. Conclusions There are a number of areas in the program that are performing well, and some aspects that could be improved. Overall students rated the VU osteopathy program as more positive than negative. The information obtained in the present study has identified areas for improvement and will enable the program leaders to facilitate changes. It will also provide other educational institutions with data on which they can make comparisons with their own programs

    Diet rapidly and reproducibly alters the human gut microbiome

    Get PDF
    Long-term diet influences the structure and activity of the trillions of microorganisms residing in the human gut1–5, but it remains unclear how rapidly and reproducibly the human gut microbiome responds to short-term macronutrient change. Here, we show that the short-term consumption of diets composed entirely of animal or plant products alters microbial community structure and overwhelms inter-individual differences in microbial gene expression. The animal-based diet increased the abundance of bile-tolerant microorganisms (Alistipes, Bilophila, and Bacteroides) and decreased the levels of Firmicutes that metabolize dietary plant polysaccharides (Roseburia, Eubacterium rectale, and Ruminococcus bromii). Microbial activity mirrored differences between herbivorous and carnivorous mammals2, reflecting trade-offs between carbohydrate and protein fermentation. Foodborne microbes from both diets transiently colonized the gut, including bacteria, fungi, and even viruses. Finally, increases in the abundance and activity of Bilophila wadsworthia on the animal-based diet support a link between dietary fat, bile acids, and the outgrowth of microorganisms capable of triggering inflammatory bowel disease6. In concert, these results demonstrate that the gut microbiome can rapidly respond to altered diet, potentially facilitating the diversity of human dietary lifestyles

    Diversity of Murine Norovirus Strains Isolated from Asymptomatic Mice of Different Genetic Backgrounds within a Single U.S. Research Institute

    Get PDF
    Antibody prevalence studies in laboratory mice indicate that murine norovirus (MNV) infections are common, but the natural history of these viruses has not been fully established. This study examined the extent of genetic diversity of murine noroviruses isolated from healthy laboratory mice housed in multiple animal facilities within a single, large research institute- the National Institute of Allergy and Infectious Diseases of the National Institutes of Health (NIAID-NIH) in Bethesda, Maryland, U.S. Ten distinct murine norovirus strains were isolated from various tissues and feces of asymptomatic wild type sentinel mice as well as asymptomatic immunodeficient (RAG 2βˆ’/βˆ’) mice. The NIH MNV isolates showed little cytopathic effect in permissive RAW264.7 cells in early passages, but all isolates examined could be adapted to efficient growth in cell culture by serial passage. The viruses, although closely related in genome sequence, were distinguishable from each other according to facility location, likely due to the introduction of new viruses into each facility from separate sources or vendors at different times. Our study indicates that the murine noroviruses are widespread in these animal facilities, despite rigorous guidelines for animal care and maintenance

    Accounting for dynamic fluctuations across time when examining fMRI test-retest reliability: Analysis of a reward paradigm in the EMBARC study

    Get PDF
    Longitudinal investigation of the neural correlates of reward processing in depression may represent an important step in defining effective biomarkers for antidepressant treatment outcome prediction, but the reliability of reward-related activation is not well understood. Thirty-seven healthy control participants were scanned using fMRI while performing a reward-related guessing task on two occasions, approximately one week apart. Two main contrasts were examined: right ventral striatum (VS) activation fMRI BOLD signal related to signed prediction errors (PE) and reward expectancy (RE). We also examined bilateral visual cortex activation coupled to outcome anticipation. Significant VS PE-related activity was observed at the first testing session, but at the second testing session, VS PE-related activation was significantly reduced. Conversely, significant VS RE-related activity was observed at time 2 but not time 1. Increases in VS RE-related activity from time 1 to time 2 were significantly associated with decreases in VS PE-related activity from time 1 to time 2 across participants. Intraclass correlations (ICCs) in VS were very low. By contrast, visual cortex activation had much larger ICCs, particularly in individuals with high quality data. Dynamic changes in brain activation are widely predicted, and failure to account for these changes could lead to inaccurate evaluations of the reliability of functional MRI signals. Conventional measures of reliability cannot distinguish between changes specified by algorithmic models of neural function and noisy signal. Here, we provide evidence for the former possibility: reward-related VS activations follow the pattern predicted by temporal difference models of reward learning but have low ICCs

    SOCS2 Influences LPS Induced Human Monocyte-Derived Dendritic Cell Maturation

    Get PDF
    Dendritic cells (DCs) are highly specific antigen presenting cells, which link innate and adaptive immune responses and participate in protecting hosts from invading pathogens. DCs can be generated in vitro by culturing human monocytes with GM-CSF and IL-4 followed by LPS induced DC maturation. We set out to study the suppressor of cytokine signaling (SOCS) proteins during maturation and activation of human monocyte-derived DCs from peripheral blood in vitro. We found that the expression of SOCS2 mRNA and protein is dramatically up-regulated during DC maturation. Silencing of SOCS2 using siRNA, inhibited DC maturation as evidenced by a decreased expression of maturation markers such as CD83, co-stimulatory molecules CD40, CD86 and HLA-DR. Furthermore, silencing of SOCS2 decreased LPS induced activation of MAP kinases (SAKP/JNK, p38, ERK), IRF3, decreased the translocation of the NF-ΞΊB transcription factor and reduced downstream gene mRNA expression. These results suggest a role for SOCS2 in the MyD88-dependent and -independent TLR4 signaling pathways. In conclusion, our results demonstrate that SOCS2 is required for appropriate TLR4 signaling in maturating human DCs via both the MyD88-dependent and -independent signaling pathway

    Scaling of Brain Metabolism with a Fixed Energy Budget per Neuron: Implications for Neuronal Activity, Plasticity and Evolution

    Get PDF
    It is usually considered that larger brains have larger neurons, which consume more energy individually, and are therefore accompanied by a larger number of glial cells per neuron. These notions, however, have never been tested. Based on glucose and oxygen metabolic rates in awake animals and their recently determined numbers of neurons, here I show that, contrary to the expected, the estimated glucose use per neuron is remarkably constant, varying only by 40% across the six species of rodents and primates (including humans). The estimated average glucose use per neuron does not correlate with neuronal density in any structure. This suggests that the energy budget of the whole brain per neuron is fixed across species and brain sizes, such that total glucose use by the brain as a whole, by the cerebral cortex and also by the cerebellum alone are linear functions of the number of neurons in the structures across the species (although the average glucose consumption per neuron is at least 10Γ— higher in the cerebral cortex than in the cerebellum). These results indicate that the apparently remarkable use in humans of 20% of the whole body energy budget by a brain that represents only 2% of body mass is explained simply by its large number of neurons. Because synaptic activity is considered the major determinant of metabolic cost, a conserved energy budget per neuron has several profound implications for synaptic homeostasis and the regulation of firing rates, synaptic plasticity, brain imaging, pathologies, and for brain scaling in evolution
    • …
    corecore