443 research outputs found

    Processing methods for photoacoustic Doppler flowmetry with a clinical ultrasound scanner

    Get PDF
    Photoacoustic flowmetry (PAF) based on time-domain cross correlation of photoacoustic signals is a promising technique for deep tissue measurement of blood flow velocity. Signal processing has previously been developed for single element transducers. Here, the processing methods for acoustic resolution PAF using a clinical ultrasound transducer array are developed and validated using a 64-element transducer array with a -6 dB detection band of 11 to 17 MHz. Measurements were performed on a flow phantom consisting of a tube (580  μm inner diameter) perfused with human blood flowing at physiological speeds ranging from 3 to 25  mm  /  s. The processing pipeline comprised: image reconstruction, filtering, displacement detection, and masking. High-pass filtering and background subtraction were found to be key preprocessing steps to enable accurate flow velocity estimates, which were calculated using a cross-correlation based method. In addition, the regions of interest in the calculated velocity maps were defined using a masking approach based on the amplitude of the cross-correlation functions. These developments enabled blood flow measurements using a transducer array, bringing PAF one step closer to clinical applicability

    Acoustic resolution photoacoustic Doppler flowmetry using a transducer array: optimising processing for velocity contrast

    Get PDF
    This work demonstrates the first measurements of blood flow velocity using photoacoustic flowmetry (PAF) employing a transducer array. The measurements were made in a flow phantom consisting of a tube (580 μm inner diameter) containing blood flowing steadily at physiological speeds ranging from 3 mm/s to 25 mm/s. Velocity measurements were based on the generation of two successive photoacoustic (PA) signals using two laser pulses with a wavelength of 1064 nm; the PA signals were detected using a 64-element transducer array with a -6 dB detection bandwidth of 11-17 MHz. We developed a processing pipeline to optimise a cross-correlation based velocity measurement method comprising the following processing steps: image reconstruction, filtering, displacement detection, and masking. We found no difference in flow detection accuracy when choosing different image reconstruction algorithms (time reversal, Fourier transformation, and delay-and-sum). High-pass filtering and wallfiltering were however found to be essential pre-processing steps in order to recover the correct displacement information. We masked the calculated velocity map based on the amplitude of the cross-correlation function in order to define the region of interest corresponding to highest signal amplitude. These developments enabled blood flow measurements using a transducer array, bringing PAF one step closer to clinical applicability

    A systematic review of the use of an expertise-based randomised controlled trial design

    Get PDF
    Acknowledgements JAC held a Medical Research Council UK methodology (G1002292) fellowship, which supported this research. The Health Services Research Unit, Institute of Applied Health Sciences (University of Aberdeen), is core-funded by the Chief Scientist Office of the Scottish Government Health and Social Care Directorates. Views express are those of the authors and do not necessarily reflect the views of the funders.Peer reviewedPublisher PD

    Detailed Enzyme Kinetics in Terms of Biochemical Species: Study of Citrate Synthase

    Get PDF
    The compulsory-ordered ternary catalytic mechanism for two-substrate two-product enzymes is analyzed to account for binding of inhibitors to each of the four enzyme states and to maintain the relationship between the kinetic constants and the reaction equilibrium constant. The developed quasi-steady flux expression is applied to the analysis of data from citrate synthase to determine and parameterize a kinetic scheme in terms of biochemical species, in which the effects of pH, ionic strength, and cation binding to biochemical species are explicitly accounted for in the analysis of the data. This analysis provides a mechanistic model that is consistent with the data that have been used support competing hypotheses regarding the catalytic mechanism of this enzyme

    Combination schemes for turning point prediction

    Get PDF
    We propose new forecast combination schemes for predicting turning points of business cycles. The combination schemes deal with the forecasting performance of a given set of models and possibly providing better turning point predictions. We consider turning point predictions generated by autoregressive (AR) and Markov-Switching AR models, which are commonly used for business cycle analysis. In order to account for parameter uncertainty we consider a Bayesian approach to both estimation and prediction and compare, in terms of statistical accuracy, the individual models and the combined turning point predictions for the United States and Euro area business cycles

    Impact of flavonoid-rich black tea and beetroot juice on postprandial peripheral vascular resistance and glucose homeostasis in obese, insulin-resistant men: a randomized controlled trial.

    Get PDF
    BACKGROUND: Insulin-stimulated muscle blood flow facilitates plasma glucose disposal after a meal, a mechanism that is impaired in obese, insulin-resistant volunteers. Nitrate- or flavonoid-rich products, through their proposed effects on nitric oxide, may improve postprandial blood flow and, subsequently, glucose disposal. To investigate whether a single dose of nitrate-rich beetroot juice or flavonoid-rich black tea lowers postprandial muscle vascular resistance in obese volunteers and alters postprandial glucose or insulin concentrations. METHOD: In a randomised, controlled, cross-over study, 16 obese, insulin-resistant males consumed 75 g glucose, which was combined with 100 ml black tea, beetroot juice or control (water). Peripheral vascular resistance (VR), calculated as mean arterial pressure divided by blood flow, was assessed in the arm and leg conduit arteries, resistance arteries and muscle microcirculation across 3 h (every 30-min) after the oral glucose load. RESULTS: During control, we found no postprandial response in VR in conduit, resistance and microvessels (all P > 0.05). Black tea decreased VR compared to control in conduit, resistance and microvessels (all P < 0.05). Beetroot juice decreased postprandial VR in resistance vessels, but not in conduit artery and microvessels. Although postprandial glucose response was similar after all interventions, postprandial insulin response was attenuated by ~29 % after tea (P < 0.0005), but not beetroot juice. CONCLUSIONS: A single dose of black tea decreased peripheral VR across upper and lower limbs after a glucose load which was accompanied by a lower insulin response. Future studies in insulin-resistant subjects are warranted to confirm the observed effects and to explore whether long-term regular tea consumption affects glucose homeostasis. TRIAL REGISTRATION: The study was registered at clinicaltrials.gov on 30(th) November 2012 (NCT01746329)

    Increased reports of severe myocarditis associated with enterovirus infection in neonates, United Kingdom, 27 June 2022 to 26 April 2023

    Get PDF
    Enteroviruses are a common cause of seasonal childhood infections. The vast majority of enterovirus infections are mild and self-limiting, although neonates can sometimes develop severe disease. Myocarditis is a rare complication of enterovirus infection. Between June 2022 and April 2023, twenty cases of severe neonatal enteroviral myocarditis caused by coxsackie B viruses were reported in the United Kingdom. Sixteen required critical care support and two died. Enterovirus PCR on whole blood was the most sensitive diagnostic test. We describe the initial public health investigation into this cluster and aim to raise awareness among paediatricians, laboratories and public health specialists
    corecore