12 research outputs found
Highly preferential association of NonF508del CF mutations with the M470 allele
AbstractBackgroundOn the basis of previous findings on random individuals, we hypothesized a preferential association of CF causing mutations with the M allele of the M470V polymorphic site of the CFTR gene.MethodsWe have determined the M/V-CF mutation haplotype in a series of 201 North East Italian and 73 Czech CF patients who were not F508del homozygotes, as F508del was already known to be fully associated with the M allele.ResultsOut of 358 not F508del CF genes, 84 carried the V allele and 274 the less common M allele. In the N-E Italian population, MM subjects have a risk of carrying a CF causing mutation 6.9× greater than VV subjects when F508del is excluded and 15.4× when F508del is included. In the Czech population a similar, although less pronounced, association is observed.ConclusionsBesides the possible biological significance of this association, the possibility of exploiting it for a pilot screening program has been explored in a local North East Italian population for which CF patients were characterized for their CF mutation. General M470V genotyping followed by common CF mutation screening limited to couples in which each partner carries at least one M allele would need testing only 39% of the couples, which contribute 89% of the total risk, with a cost benefit
Modifier gene study of meconium ileus in cystic fibrosis: Statistical considerations and gene mapping results
Cystic fibrosis (CF) is a monogenic disease due to mutations in the CFTR gene. Yet, variability in CF disease presentation is presumed to be affected by modifier genes, such as those recently demonstrated for the pulmonary aspect. Here, we conduct a modifier gene study for meconium ileus (MI), an intestinal obstruction that occurs in 16-20% of CF newborns, providing linkage and association results from large family and case-control samples. Linkage analysis of modifier traits is different than linkage analysis of primary traits on which a sample was ascertained. Here, we articulate a source of confounding unique to modifier gene studies and provide an example of how one might overcome the confounding in the context of linkage studies. Our linkage analysis provided evidence of a MI locus on chromosome 12p13.3, which was segregating in up to 80% of MI families with at least one affected offspring (HLOD = 2.9). Fine mapping of the 12p13.3 region in a large case-control sample of pancreatic insufficient Canadian CF patients with and without MI pointed to the involvement of ADIPOR2 in MI (p = 0.002). This marker was substantially out of Hardy-Weinberg equilibrium in the cases only, and provided evidence of a cohort effect. The association with rs9300298 in the ADIPOR2 gene at the 12p13.3 locus was replicated in an independent sample of CF families. A protective locus, using the phenotype of no-MI, mapped to 4q13.3 (HLOD = 3.19), with substantial heterogeneity. A candidate gene in the region, SLC4A4, provided preliminary evidence of association (p = 0.002), warranting further follow-up studies. Our linkage approach was used to direct our fine-mapping studies, which uncovered two potential modifier genes worthy of follow-up. © 2009 Springer-Verlag.link_to_OA_fulltex
A common variant on chromosome 11q13 is associated with atopic dermatitis.
We conducted a genome-wide association study in 939 individuals with atopic dermatitis and 975 controls as well as 270 complete nuclear families with two affected siblings. SNPs consistently associated with atopic dermatitis in both discovery sets were then investigated in two additional independent replication sets totalling 2,637 cases and 3,957 controls. Highly significant association was found with allele A of rs7927894 on chromosome 11q13.5, located 38 kb downstream of C11orf30 (P-combined = 7.6 x 10(-10)). Approximately 13% of individuals of European origin are homozygous for rs7927894[A], and their risk of developing atopic dermatitis is 1.47 times that of noncarriers