196 research outputs found

    The Landau Pole and ZZ^{\prime} decays in the 331 bilepton model

    Full text link
    We calculate the decay widths and branching ratios of the extra neutral boson ZZ^{\prime} predicted by the 331 bilepton model in the framework of two different particle contents. These calculations are performed taken into account oblique radiative corrections, and Flavor Changing Neutral Currents (FCNC) under the ansatz of Matsuda as a texture for the quark mass matrices. Contributions of the order of 10110210^{-1}-10^{-2} are obtained in the branching ratios, and partial widths about one order of magnitude bigger in relation with other non- and bilepton models are also obtained. A Landau-like pole arise at 3.5 TeV considering the full particle content of the minimal model (MM), where the exotic sector is considered as a degenerated spectrum at 3 TeV scale. The Landau pole problem can be avoid at the TeV scales if a new leptonic content running below the threshold at % 3 TeV is implemented as suggested by other authors.Comment: 20 pages, 5 figures, LaTeX2

    Scalar Potential Without Cubic Term in 3-3-1 Models Without Exotic Electric Charges

    Get PDF
    A detailed study of the criteria for stability of the scalar potential, and the proper electroweak symmetry breaking pattern in some 3-3-1 models without exotic electric charges is presented. In this paper we concentrate in a scalar sector with three Higgs scalar triplets, with a potential that does not include the cubic term, due to the presence of a discrete symmetry. For the analysis we use, and improve, a method previously developed to study the scalar potential in the two-Higgs-doublet extension of the standard model. Our main result is to show the consistency of those 3-3-1 models without exotic electric charges.Comment: 19 page
    corecore