1,230 research outputs found

    Changes in Binding of [(123)I]CLINDE, a High-Affinity Translocator Protein 18 kDa (TSPO) Selective Radioligand in a Rat Model of Traumatic Brain Injury

    Get PDF
    After traumatic brain injury (TBI), secondary injuries develop, including neuroinflammatory processes that contribute to long-lasting impairments. These secondary injuries represent potential targets for treatment and diagnostics. The translocator protein 18 kDa (TSPO) is expressed in activated microglia cells and upregulated in response to brain injury and therefore a potential biomarker of the neuroinflammatory processes. Second-generation radioligands of TSPO, such as [123I]CLINDE, have a higher signal-to-noise ratio as the prototype ligand PK11195. [123I]CLINDE has been employed in human studies using single-photon emission computed tomography to image the neuroinflammatory response after stroke. In this study, we used the same tracer in a rat model of TBI to determine changes in TSPO expression. Adult Sprague– Dawley rats were subjected to moderate controlled cortical impact injury and sacrificed at 6, 24, 72 h and 28 days post surgery. TSPO expression was assessed in brain sections employing [123I]CLINDE in vitro autoradiography. From 24 h to 28 days post surgery, injured animals exhibited a marked and time-dependent increase in [123I]CLINDE binding in the ipsilateral motor, somatosensory and parietal cortex, as well as in the hippocampus and thalamus. Interestingly, binding was also significantly elevated in the contralateral M1 motor cortex following TBI. Craniotomy without TBI caused a less marked increase in [123I] CLINDE binding, restricted to the ipsilateral hemisphere. Radioligand binding was consistent with an increase in TSPO mRNA expression and CD11b immunoreactivity at the contusion site. This study demonstrates the applicability of [123I]CLINDE for detailed regional and quantitative assessment of glial activity in experimental models of TBI

    The effect of paternal factors on perinatal and paediatric outcomes : a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Maternal factors, including increasing childbearing age and various life-style factors, are associated with poorer short- and long-term outcomes for children, whereas knowledge of paternal parameters is limited. Recently, increasing paternal age has been associated with adverse obstetric outcomes, birth defects, autism spectrum disorders and schizophrenia in children. OBJECTIVE AND RATIONALE: The aim of this systematic review is to describe the influence of paternal factors on adverse short- and long-term child outcomes. SEARCH METHODS: PubMed, Embase and Cochrane databases up to January 2017 were searched. Paternal factors examined included paternal age and life-style factors such as body mass index (BMI), adiposity and cigarette smoking. The outcome variables assessed were short-term outcomes such as preterm birth, low birth weight, small for gestational age (SGA), stillbirth, birth defects and chromosomal anomalies. Long-term outcome variables included mortality, cancers, psychiatric diseases/disorders and metabolic diseases. The systematic review follows PRISMA guidelines. Relevant meta-analyses were performed. OUTCOMES: The search included 14 371 articles out of which 238 met the inclusion criteria, and 81 were included in quantitative synthesis (meta-analyses). Paternal age and paternal life-style factors have an association with adverse outcome in offspring. This is particularly evident for psychiatric disorders such as autism, autism spectrum disorders and schizophrenia, but an association is also found with stillbirth, any birth defects, orofacial clefts and trisomy 21. Paternal height, but not BMI, is associated with birth weight in offspring while paternal BMI is associated with BMI, weight and/or body fat in childhood. Paternal smoking is found to be associated with an increase in SGA, birth defects such as congenital heart defects, and orofacial clefts, cancers, brain tumours and acute lymphoblastic leukaemia. These associations are significant although moderate in size, with most pooled estimates between 1.05 and 1.5, and none exceeding 2.0. WIDER IMPLICATIONS: Although the increased risks of adverse outcome in offspring associated with paternal factors and identified in this report represent serious health effects, the magnitude of these effects seems modest.Peer reviewe

    α7 And β2 Nicotinic Acetylcholine Receptor Subunits Form Heteromeric Receptor Complexes That Are Expressed In The Human Cortex And Display Distinct Pharmacological Properties

    Get PDF
    The existence of α7β2 nicotinic acetylcholine receptors (nAChRs) has recently been demonstrated in both the rodent and human brain. Since α7-containing nAChRs are promising drug targets for schizophrenia and Alzheimer\u27s disease, it is critical to determine whether α7β2 nAChRs are present in the human brain, in which brain areas, and whether they differ functionally from α7 nAChR homomers. We used α-bungarotoxin to affinity purify α7-containing nAChRs from surgically excised human temporal cortex, and found that α7 subunits co-purify with β2 subunits, indicating the presence of α7β2 nAChRs in the human brain. We validated these results by demonstrating co-purification of β2 from wild-type, but not α7 or β2 knock-out mice. The pharmacology and kinetics of human α7β2 nAChRs differed significantly from that of α7 homomers in response to nAChR agonists when expressed in Xenopus oocytes and HEK293 cells. Notably, α7β2 heteromers expressed in HEK293 cells display markedly slower rise and decay phases. These results demonstrate that α7 subunits in the human brain form heteromeric complexes with β2 subunits, and that human α7β2 nAChR heteromers respond to nAChR agonists with a unique pharmacology and kinetic profile. α7β2 nAChRs thus represent an alternative mechanism for the reported clinical efficacy of α7 nAChR ligands

    Lynx1 and Aβ1–42 bind competitively to multiple nicotinic acetylcholine receptor subtypes

    Get PDF
    AbstractLynx1 regulates synaptic plasticity in the brain by regulating nicotinic acetylcholine receptors (nAChRs). It is not known to which extent Lynx1 can bind to endogenous nAChR subunits in the brain or how this interaction is affected by Alzheimer's disease pathology. We apply affinity purification to demonstrate that a water-soluble variant of human Lynx1 (Ws-Lynx1) isolates α3, α4, α5, α6, α7, β2, and β4 nAChR subunits from human and rat cortical extracts, and rat midbrain and olfactory bulb extracts, suggesting that Lynx1 forms complexes with multiple nAChR subtypes in the human and rodent brain. Incubation with Ws-Lynx1 decreases nicotine-mediated extracellular signal–regulated kinase phosphorylation in PC12 cells and striatal neurons, indicating that binding of Ws-Lynx1 is sufficient to inhibit signaling downstream of nAChRs. The effect of nicotine in PC12 cells is independent of α7 or α4β2 nAChRs, suggesting that Lynx1 can affect the function of native non-α7, non-α4β2 nAChR subtypes. We further show that Lynx1 and oligomeric β-amyloid1–42 compete for binding to several nAChR subunits, that Ws-Lynx1 prevents β-amyloid1–42–induced cytotoxicity in cortical neurons, and that cortical Lynx1 levels are decreased in a transgenic mouse model with concomitant β-amyloid and tau pathology. Our data suggest that Lynx1 binds to multiple nAChR subtypes in the brain and that this interaction might have functional and pathophysiological implications in relation to Alzheimer's disease
    • …
    corecore