6,337 research outputs found
Going higher in the First-order Quantifier Alternation Hierarchy on Words
We investigate the quantifier alternation hierarchy in first-order logic on
finite words. Levels in this hierarchy are defined by counting the number of
quantifier alternations in formulas. We prove that one can decide membership of
a regular language to the levels (boolean combination of
formulas having only 1 alternation) and (formulas having only 2
alternations beginning with an existential block). Our proof works by
considering a deeper problem, called separation, which, once solved for lower
levels, allows us to solve membership for higher levels
On Varieties of Ordered Automata
The Eilenberg correspondence relates varieties of regular languages to
pseudovarieties of finite monoids. Various modifications of this correspondence
have been found with more general classes of regular languages on one hand and
classes of more complex algebraic structures on the other hand. It is also
possible to consider classes of automata instead of algebraic structures as a
natural counterpart of classes of languages. Here we deal with the
correspondence relating positive -varieties of languages to
positive -varieties of ordered automata and we present various
specific instances of this correspondence. These bring certain well-known
results from a new perspective and also some new observations. Moreover,
complexity aspects of the membership problem are discussed both in the
particular examples and in a general setting
Collaboration in Social Networks
The very notion of social network implies that linked individuals interact
repeatedly with each other. This allows them not only to learn successful
strategies and adapt to them, but also to condition their own behavior on the
behavior of others, in a strategic forward looking manner. Game theory of
repeated games shows that these circumstances are conducive to the emergence of
collaboration in simple games of two players. We investigate the extension of
this concept to the case where players are engaged in a local contribution game
and show that rationality and credibility of threats identify a class of Nash
equilibria -- that we call "collaborative equilibria" -- that have a precise
interpretation in terms of sub-graphs of the social network. For large network
games, the number of such equilibria is exponentially large in the number of
players. When incentives to defect are small, equilibria are supported by local
structures whereas when incentives exceed a threshold they acquire a non-local
nature, which requires a "critical mass" of more than a given fraction of the
players to collaborate. Therefore, when incentives are high, an individual
deviation typically causes the collapse of collaboration across the whole
system. At the same time, higher incentives to defect typically support
equilibria with a higher density of collaborators. The resulting picture
conforms with several results in sociology and in the experimental literature
on game theory, such as the prevalence of collaboration in denser groups and in
the structural hubs of sparse networks
On FO2 quantifier alternation over words
We show that each level of the quantifier alternation hierarchy within
FO^2[<] -- the 2-variable fragment of the first order logic of order on words
-- is a variety of languages. We then use the notion of condensed rankers, a
refinement of the rankers defined by Weis and Immerman, to produce a decidable
hierarchy of varieties which is interwoven with the quantifier alternation
hierarchy -- and conjecturally equal to it. It follows that the latter
hierarchy is decidable within one unit: given a formula alpha in FO^2[<], one
can effectively compute an integer m such that alpha is equivalent to a formula
with at most m+1 alternating blocks of quantifiers, but not to a formula with
only m-1 blocks. This is a much more precise result than what is known about
the quantifier alternation hierarchy within FO[<], where no decidability result
is known beyond the very first levels
Guessing a password over a wireless channel (on the effect of noise non-uniformity)
A string is sent over a noisy channel that erases some of its characters.
Knowing the statistical properties of the string's source and which characters
were erased, a listener that is equipped with an ability to test the veracity
of a string, one string at a time, wishes to fill in the missing pieces. Here
we characterize the influence of the stochastic properties of both the string's
source and the noise on the channel on the distribution of the number of
attempts required to identify the string, its guesswork. In particular, we
establish that the average noise on the channel is not a determining factor for
the average guesswork and illustrate simple settings where one recipient with,
on average, a better channel than another recipient, has higher average
guesswork. These results stand in contrast to those for the capacity of wiretap
channels and suggest the use of techniques such as friendly jamming with
pseudo-random sequences to exploit this guesswork behavior.Comment: Asilomar Conference on Signals, Systems & Computers, 201
A tunable cavity-locked diode laser source for terahertz photomixing
An all solid-state approach to the precise frequency synthesis and control of widely tunable terahertz radiation by differencing continuous-wave diode lasers at 850 nm is reported in this paper. The difference frequency is synthesized by three fiber-coupled external-cavity laser diodes. Two of the lasers are Pound-Drever-Hall locked to different orders of a Fabry-Perot (FP) cavity, and the third is offset-frequency locked to the second of the cavity-locked lasers using a tunable microwave oscillator. The first cavity-locked laser and the offset-locked laser produce the difference frequency, whose value is accurately determined by the sum of an integer multiple of the free spectral range of the FP cavity and the offset frequency. The dual-frequency 850-nm output of the three laser system is amplified to 500 mW through two-frequency injection seeding of a single semiconductor tapered optical amplifier. As proof of precision frequency synthesis and control of tunability, the difference frequency is converted into a terahertz wave by optical-heterodyne photomixing in low-temperature-grown GaAs and used for the spectroscopy of simple molecules. The 3-dB spectral power bandwidth of the terahertz radiation is routinely observed to be ≾1 MHz. A simple, but highly accurate, method of obtaining an absolute frequency calibration is proposed and an absolute calibration of 10^(-7) demonstrated using the known frequencies of carbon monoxide lines between 0.23-1.27 THz
- …